This proposal requests continued funding of the predoctoral Training Program in Cell and Molecular Biology at the University of Washington and Fred Hutchinson Cancer Center (UW/FHCRC). Trainees in the program are chosen by a rigorous selection process that picks the top graduate students from three interdisciplinary programs and eight departmental programs. The major goal of this program is to train students in cell and molecular biology during their graduate career by exposing them to the wide range of research in this area. Students in the Training Program receive training beyond the standard graduate program through a monthly student presentation series that includes all of the trainees, an annual retreat that includes the trainees and their advisors, and through lectures supported by this program. This program plays an important role in training the next generation of scientists for academia and industry. The trainees have a strong record of success as shown by their publications in graduate school and the career choices they make after they leave graduate school.

Public Health Relevance

The Training Program in Cell and Molecular Biology is designed to train the top graduate students at the University of Washington and Fred Hutchinson Cancer Center in the general areas of cell biology and molecular biology, both of which are of major importance for the prevention, detection and treatment of a wide variety of human diseases. This training program plays a special role because it brings together graduate students from a wide variety of biomedical disciplines, allowing these future leaders of academia and industry to broaden their scientific horizons well beyond what they would normally learn in graduate school. The regular meetings of this training program allow for an important exchange of ideas across disciplines, allowing the trainees to place their studies in a broader context and to consider new applications and approaches to their research.

Agency
National Institute of Health (NIH)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007270-40
Application #
8690852
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
40
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98195
Wilson, S S; Tocchi, A; Holly, M K et al. (2015) A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol 8:352-61
DaRosa, Paul A; Wang, Zhizhi; Jiang, Xiaomo et al. (2015) Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517:223-6
Thayer, Nathaniel H; Leverich, Christina K; Fitzgibbon, Matthew P et al. (2014) Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc Natl Acad Sci U S A 111:14019-26
Higdon, Lauren E; Deets, Katherine A; Friesen, Travis J et al. (2014) Receptor revision in CD4 T cells is influenced by follicular helper T cell formation and germinal-center interactions. Proc Natl Acad Sci U S A 111:5652-7
Berkley, Amy M; Fink, Pamela J (2014) Cutting edge: CD8+ recent thymic emigrants exhibit increased responses to low-affinity ligands and improved access to peripheral sites of inflammation. J Immunol 193:3262-6
Bennett, Christopher F; Vander Wende, Helen; Simko, Marissa et al. (2014) Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat Commun 5:3483
Kemp, Christopher J; Moore, James M; Moser, Russell et al. (2014) CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. Cell Rep 7:1020-9
Recidoro, Anthony M; Roof, Amanda C; Schmitt, Michael et al. (2014) Botulinum toxin induces muscle paralysis and inhibits bone regeneration in zebrafish. J Bone Miner Res 29:2346-56
Metzger, Michael J; Certo, Michael T (2014) Design and analysis of site-specific single-strand nicking endonucleases for gene correction. Methods Mol Biol 1114:237-44
Correia, Bruno E; Bates, John T; Loomis, Rebecca J et al. (2014) Proof of principle for epitope-focused vaccine design. Nature 507:201-6

Showing the most recent 10 out of 567 publications