The mission of the Medical Scientist Training Program (MSTP) of the Albert Einstein College of Medicine is to train physician-scientists who will become future leaders in biomedical and clinical research. It strives to recruit a diverse group of outstanding students and to provide them with rigorous combined medical and research training that prepares them for careers as physician-scientists. Through a flexible and continuously evolving curriculum that includes 1) specialized MSTP courses and 2) integration of grad and med school curriculum in the first 2 years, the students are guided through a program that can be tailored to meet their individual needs and interests. The program seeks to provide the trainees with a unique foundation for careers as independent physician-scientists and to facilitate their placement into outstanding postgraduate training programs to facilitate the next step in their career progression. The training program has 3 phases. In the first 2 years students take an integrated combination of medical, graduate and MSTP-specific courses to provide the didactic foundation for their research and clinical training. They perform research rotations to assist them in choosing their thesis research lab. In the program's 2nd phase, they perform independent, original research under their mentor's guidance. They publish their discoveries in high quality peer reviewed papers and prepare and defend a Ph.D. thesis. Participation in an evening, MSTP-run, ambulatory outpatient clinic allows them to build their clinical skills during the PhD phase of the program. In the final phase, they complete their clinical training on the wards. The admissions process seeks to identify individuals with the intelligence, curiosity, creativity, perseverance and enthusiasm for science that is essential for future success in a research career. 117 trainees are in the program, 43% are woman and 14% are members of underrepresented minorities. Since its inception in 1964 as one of the first three NIH funded MD-PhD training programs, 359 trainees have graduated. 277 have completed postgraduate training and published over 14,611 papers, an average of 53 papers per graduate. 82% have jobs at academic medical centers, research institutes, NIH or pharmaceutical companies. By various measures, the program graduates have achieved outstanding success in their chosen careers and have contributed to the advancement of biomedical research and academic medicine. Based on the quality of our past accomplishments, we propose to expand the program, to further integrate graduate and medical training, and increase opportunities for involvement in clinical and translational research in order to prepare a future generation of physician-scientists who will be at the leading edge of biomedical research with the ultimate goal of improving human health and reducing the burden of disease.

Public Health Relevance

physician-scientists perform a critical role at the interface between basic biomedical research and clinical medicine. This program will train a diverse group of highly skilled physician-scientists who will facilitate the process of scientific discovery that aims to reduce the burden o disease for all Americans. PUBLIC HEALTH RELEVANCE: This program will train a diverse group of outstanding students and prepare them to enter the biomedical research workforce as physician-scientists who will perform basic, translational and clinical research. This research will lead to new treatments to prevent or cure disease and improve the health of all Americans.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Preusch, Peter
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
Schools of Medicine
United States
Zip Code
Andreyeva, Evgeniya N; Bernardo, Travis J; Kolesnikova, Tatyana D et al. (2017) Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in Drosophila. Genes Dev 31:603-616
Aneke-Nash, Chino S; Xue, Xiaonan; Qi, Qibin et al. (2017) The Association Between IGF-I and IGFBP-3 and Incident Diabetes in an Older Population of Men and Women in the Cardiovascular Health Study. J Clin Endocrinol Metab 102:4541-4547
Stock, Ariel D; Gelb, Sivan; Pasternak, Ofer et al. (2017) The blood brain barrier and neuropsychiatric lupus: new perspectives in light of advances in understanding the neuroimmune interface. Autoimmun Rev 16:612-619
Karp, Jerome M; Sparks, Samuel; Cowburn, David (2017) Effects of FGFR2 kinase activation loop dynamics on catalytic activity. PLoS Comput Biol 13:e1005360
Santos-Ledo, Adrian; Garcia-Macia, Marina; Campbell, Philip D et al. (2017) Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis. PLoS Genet 13:e1006918
Jiang, Julie M; Seng, Elizabeth K; Zimmerman, Molly E et al. (2017) Evaluation of the Reliability, Validity, and Predictive Validity of the Subscales of the Perceived Stress Scale in Older Adults. J Alzheimers Dis 59:987-996
Kerantzas, Christopher A; Jacobs Jr, William R (2017) Origins of Combination Therapy for Tuberculosis: Lessons for Future Antimicrobial Development and Application. MBio 8:
Yakubu, Rama R; Silmon de Monerri, Natalie C; Nieves, Edward et al. (2017) Comparative Monomethylarginine Proteomics Suggests that Protein Arginine Methyltransferase 1 (PRMT1) is a Significant Contributor to Arginine Monomethylation in Toxoplasma gondii. Mol Cell Proteomics 16:567-580
Kratschmer, Christina; Levy, Matthew (2017) Effect of Chemical Modifications on Aptamer Stability in Serum. Nucleic Acid Ther 27:335-344
Fremont, Rachel; Tewari, Ambika; Angueyra, Chantal et al. (2017) A role for cerebellum in the hereditary dystonia DYT1. Elife 6:

Showing the most recent 10 out of 749 publications