This is an application for renewal of a longstanding program for predoctoral training in Pharmacological Sciences. Eight training slots are requested to support students during their first two years. The program seeks to meet the need for well-trained scientists who can maintain rapid progress in applying advances in biology to medicine. Rigorous training in molecular biology, genetics, biochemistry, structural biology, and cell biology, as well as pharmacology, forms the foundation of the program. These many disciplines and others such as systems biology and physiology are reflected in the research activities and classes offered to the students. The training program is a specialized area of interest within the Biological and Biomedical Sciences (BBS) graduate program at Harvard Medical School. The training program draws its faculty members from various basic science and clinical departments. The central department for this program is Biological Chemistry and Molecular Pharmacology, although faculty members from other departments play important roles in the training program. The various departments and the training grant faculty are highly interactive. The research activities of the training grant faculty span a broad spectrum of pharmacological sciences with multiple areas of research strength. Students in the program are closely advised and monitored, both before and after starting dissertation research. In their first year, they take core courses covering multiple disciplines in basic biomedical sciences, and a course that stresses reading original research papers and critical thinking. They are required to take a core pharmacology course. They go on to take advanced courses in pharmacology and in areas relevant to pharmacological sciences including human biology, which also stress critical and quantitative thinking. Full time dissertation research follows course work, laboratory rotations, and qualifying examinations. Students receive training in teaching. They participate in multiple other important activities of the training program including a seminar series, a yearly Symposium, and a journal club. This training plan should ensure the strengthening of a program that aims to train students to go on to match or even exceed the accomplishments of previous trainees who now fill leadership positions in pharmacological sciences.

Public Health Relevance

Continued progress in medicine requires well-trained scientists who can apply advances in knowledge in biology to more fully understand how drugs work and to discover new and better drugs. To this end, this research training program seeks to train students seeking the Ph.D. degree in multiple modern biological disciplines and pharmacology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007306-37
Application #
8286159
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
1975-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
37
Fiscal Year
2012
Total Cost
$357,236
Indirect Cost
$16,980
Name
Harvard University
Department
Biology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Dickson, John R; Kruse, Carla; Montagna, Daniel R et al. (2013) Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127:739-49
Morris, Zachary S; McClatchey, Andrea I (2009) Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma. Proc Natl Acad Sci U S A 106:9767-72
Suo, Z; Tseng, C C; Walsh, C T (2001) Purification, priming, and catalytic acylation of carrier protein domains in the polyketide synthase and nonribosomal peptidyl synthetase modules of the HMWP1 subunit of yersiniabactin synthetase. Proc Natl Acad Sci U S A 98:99-104
Madison, L L; Vivas, E I; Li, Y M et al. (1997) The leader peptide is essential for the post-translational modification of the DNA-gyrase inhibitor microcin B17. Mol Microbiol 23:161-8
Li, Y M; Milne, J C; Madison, L L et al. (1996) From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274:1188-93
Swope, S L; Schonbrunn, A (1990) Desensitization of islet cells to bombesin involves both receptor down-modulation and inhibition of receptor function. Mol Pharmacol 37:758-66
King, S C; Wilson, T H (1990) Mechanism of enhanced melibiose transport rate catalyzed by an Escherichia coli lactose carrier mutant with leucine substituted for serine-306. The pH-dependence of melibiose efflux. Biochim Biophys Acta 1022:373-80
Kapler, G M; Coburn, C M; Beverley, S M (1990) Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol 10:1084-94
King, S C; Wilson, T H (1990) Sensitivity of efflux-driven carrier turnover to external pH in mutants of the Escherichia coli lactose carrier that have tyrosine or phenylalanine substituted for histidine-322. A comparison of lactose and melibiose. J Biol Chem 265:3153-60
King, S C; Wilson, T H (1990) Characterization of Escherichia coli lactose carrier mutants that transport protons without a cosubstrate. Probes for the energy barrier to uncoupled transport. J Biol Chem 265:9645-51

Showing the most recent 10 out of 26 publications