Continued support is requested for an ongoing program in graduate research training in Genetics at the University of Oregon. Our goal is to produce creative, rigorous, and experimentally skilled scientists with an appreciation for the evolutionary, molecular, cellular, and developmental contexts of gene function and heredity.
We aim to help students develop the skills to lead research programs of their own, communicate science to the lay public, and teach the next generation of geneticists. Research training within an active laboratory provides the backbone of our program. We ensure a solid intellectual foundation by requiring trainees to take graduate level coursework in three core areas (molecular genetics, developmental genetics, and evolutionary genetics) and in statistics. Coursework is complemented in the first year by an intensive laboratory rotation program. We surround the lab and coursework with a wealth of enhancing and broadening experiences -- teaching, journal clubs, student research talks, seminar series by outside speakers, and more. Funds are requested for nine predoctoral trainee positions within a program that includes approximately 55 Ph.D. students and 23 faculty. The program brings together students and faculty from three research institutes (Institute of Molecular Biology, Institute of Neuroscience, and Institute of Ecology and Evolution) and three Departments (Biology, Chemistry, and Psychology). The program fosters interdisciplinary training via its highly collaborative group of training faculty, whose expertise spans the breadth of classical genetics, genomics, and allied disciplines. Students move easily between laboratories in the different departments and institutes due to the close proximity of all GTG faculty labs and to our faculty's commitment to minimizing bureaucratic barriers to such movement. The vast majority of former trainees have strong publication records and are employed in biomedical research and/or teaching.

Public Health Relevance

This application requests continued support for a Ph.D. program of research training in Genetics. A knowledge of how genes function, how they are regulated, and how they evolve is fundamental to virtually all problems in human physiology and disease. This program fosters interdisciplinary training via its highly collaborative group of training faculty, whose expertise spans the breadth of classical genetics, modern genetics and allied disciplines. We aim to help students develop into imaginative and rigorous research scientists who are equipped to lead research programs of their own, communicate science to the lay public, and teach the next generation of scientists.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM007413-36
Application #
8474482
Study Section
Special Emphasis Panel (TWD)
Program Officer
Carter, Anthony D
Project Start
1977-07-01
Project End
2018-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
36
Fiscal Year
2013
Total Cost
$357,236
Indirect Cost
$16,980
Name
University of Oregon
Department
Biochemistry
Type
Organized Research Units
DUNS #
948117312
City
Eugene
State
OR
Country
United States
Zip Code
97403
Braasch, Ingo; Peterson, Samuel M; Desvignes, Thomas et al. (2015) A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. J Exp Zool B Mol Dev Evol 324:316-41
Stewart, Scott; Gomez, Alan W; Armstrong, Benjamin E et al. (2014) Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration. Cell Rep 6:482-98
Wilson, Catherine A; High, Samantha K; McCluskey, Braedan M et al. (2014) Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 198:1291-308
Latta 4th, Leigh C; Morgan, Kendall K; Weaver, Casse S et al. (2013) Genomic background and generation time influence deleterious mutation rates in Daphnia. Genetics 193:539-44
Bayraktar, Omer Ali; Doe, Chris Q (2013) Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498:449-55
Schaack, S; Allen, D E; Latta 4th, L C et al. (2013) The effect of spontaneous mutations on competitive ability. J Evol Biol 26:451-6
Bradshaw, W E; Emerson, K J; Holzapfel, C M (2012) Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii. Heredity (Edinb) 108:473-9
Hale, Laura A; Fowler, Daniel K; Eisen, Judith S (2011) Netrin signaling breaks the equivalence between two identified zebrafish motoneurons revealing a new role of intermediate targets. PLoS One 6:e25841
Miller, Adam C; Lyons, Eric L; Herman, Tory G (2009) cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr Biol 19:1378-83
Emerson, Kevin J; Dake, Sabrina J; Bradshaw, William E et al. (2009) Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:385-91

Showing the most recent 10 out of 61 publications