The Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology requests renewal of its major training grant. The department is organized to promote interdisciplinary graduate training and research in neuroscience and behavior, approached with the experimental power of modern cellular and molecular neuroscience, systems neuroscience and cognitive science, combined with the theoretical strength of computational neuroscience and artificial intelligence. Trainees begin laboratory work under one or more advisors through lab rotations in the first term and subsequently join a laboratory, working on problems in learning and memory, neural development, vision, or motor control. Required coursework can be completed in two to three years, with a two-term sequence of core courses in the first year and a flexible array of graduate lecture courses, seminars, and guided reading. Oral and written reports to the faculty and at professional meetings and in journals mark the students'progress through completion of a thesis which is usually based on the second major project, begun by the third year. Most students continue in research careers, armed with skills that typically span multiple disciplines across cellular and molecular neuroscience, systems neuroscience, cognitive neuroscience, neuropsychology, psychophysics, and computation. Trainees will, in general, have strong backgrounds in the natural sciences (e.g., undergraduate majors in biology, chemistry, physics, mathematics or electrical engineering). Occasional trainees will already hold a master's degree in another field. Candidates for the graduate program will be chosen by the department Graduate Committee constituted for the purpose of overseeing this program and will be evaluated on the basis of interviews, talent for research as demonstrated by past performance, letters of recommendation, grades, and GRE scores. Funds are requested for 5 years to support 12 trainees per year.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Hagan, Ann A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Schools of Arts and Sciences
United States
Zip Code
Burgos-Robles, Anthony; Kimchi, Eyal Y; Izadmehr, Ehsan M et al. (2017) Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat Neurosci 20:824-835
Tillberg, Paul W; Chen, Fei; Piatkevich, Kiryl D et al. (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 34:987-92
Ferrario, Carrie R; Labouèbe, Gwenaël; Liu, Shuai et al. (2016) Homeostasis Meets Motivation in the Battle to Control Food Intake. J Neurosci 36:11469-11481
Nieh, Edward H; Vander Weele, Caitlin M; Matthews, Gillian A et al. (2016) Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation. Neuron 90:1286-1298
Lafer-Sousa, Rosa; Conway, Bevil R; Kanwisher, Nancy G (2016) Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques. J Neurosci 36:1682-97
Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M et al. (2016) Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. Cell 164:617-31
Felix-Ortiz, A C; Burgos-Robles, A; Bhagat, N D et al. (2016) Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321:197-209
Hubel, David H; Wiesel, Torsten N; Yeagle, Erin M et al. (2015) Binocular stereoscopy in visual areas V-2, V-3, and V-3A of the macaque monkey. Cereb Cortex 25:959-71
Keller, Joseph B; Hedden, Trey; Thompson, Todd W et al. (2015) Resting-state anticorrelations between medial and lateral prefrontal cortex: association with working memory, aging, and individual differences. Cortex 64:271-80
Sacchet, Matthew D; LaPlante, Roan A; Wan, Qian et al. (2015) Attention drives synchronization of alpha and beta rhythms between right inferior frontal and primary sensory neocortex. J Neurosci 35:2074-82

Showing the most recent 10 out of 71 publications