For more than 30 years the Neuroscience Training Program has provided nearly all of the graduate training in neuroscience at the University of Wisconsin-Madison. Students are able to engage in research training in faculty laboratories. The faculty in the Program have research interests that span the breadth of modern neuroscience. The Neuroscience Training Program is designed specifically to allow students to develop research independence within a structured framework.
The specific aim of this application is to obtain continued support for this training. The 56 members of the training faculty in the Program are drawn from 17 departments from across the UW-Madison campus. The faculty brings an array of scientific interests and methodologies to student training, ranging from molecular genetics to whole brain imaging. Students are encouraged to combine methods learned in different laboratories in approaching their research questions, and they are advised to seek advice from several faculty members in developing and executing their research project. Due to this diversity, the training faculty set an intellectual format for students in the Program that emphasizes conceptual and highly integrative approaches to scientific endeavors. Such interaction provides a context that encourages scientific advances. The primary goal of the Program's training in neuroscience is to enable students to gain experience and knowledge through coursework, seminars, laboratory research, teaching, and community outreach. As has been customary in the Program, the selection of trainees will continue to be based principally upon prior research accomplishments and demonstrated potential for an independent research career as productive neuroscientists. The Program's goal is to attract students to neuroscience and to train them with the intellectual breadth necessary for scientific leadership.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007507-30
Application #
7253382
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Cole, Alison E
Project Start
1978-07-01
Project End
2008-06-30
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
30
Fiscal Year
2007
Total Cost
$507,777
Indirect Cost
Name
University of Wisconsin Madison
Department
Psychiatry
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Dempsey, Robert J; Jackson, Daren C; Wilbrand, Stephanie M et al. (2018) The Preservation of Cognition 1 Year After Carotid Endarterectomy in Patients With Prior Cognitive Decline. Neurosurgery 82:322-328
Jones, Corinne A; Rogus-Pulia, Nicole M; Forgues, Angela L et al. (2018) SLP-Perceived Technical and Patient-Centered Factors Associated with Pharyngeal High-Resolution Manometry. Dysphagia :
Jones, Corinne A; Duffy, Mary K; Hoffman, Sarah A et al. (2018) Vocalization development in common marmosets for neurodegenerative translational modeling. Neurol Res 40:303-311
Jones, Corinne A; Forgues, Angela L; Rogus-Pulia, Nicole M et al. (2018) Correlates of Early Pharyngeal High-Resolution Manometry Adoption in Expert Speech-Language Pathologists. Dysphagia :
Rosen, Sarah P; Abdelhalim, Suzan M; Jones, Corinne A et al. (2018) Effect of Body Position on Pharyngeal Swallowing Pressures Using High-Resolution Manometry. Dysphagia 33:389-398
Rayasam, Aditya; Kijak, Julie A; Dallmann, McKenna et al. (2018) Regional Distribution of CNS Antigens Differentially Determines T-Cell Mediated Neuroinflammation in a CX3CR1-Dependent Manner. J Neurosci 38:7058-7071
Miller, Andrew H; Howe, Hollis B; Krause, Bryan M et al. (2018) Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior. J Neurosci 38:5220-5236
Mayner, William G P; Marshall, William; Albantakis, Larissa et al. (2018) PyPhi: A toolbox for integrated information theory. PLoS Comput Biol 14:e1006343
Xue, Renhao; Ruhl, David A; Briguglio, Joseph S et al. (2018) Doc2-mediated superpriming supports synaptic augmentation. Proc Natl Acad Sci U S A 115:E5605-E5613
Clarkson, Benjamin D; Walker, Alec; Harris, Melissa G et al. (2017) CCR7 deficient inflammatory Dendritic Cells are retained in the Central Nervous System. Sci Rep 7:42856

Showing the most recent 10 out of 308 publications