This application requests resources to support 42 trainees per year through the Medical Scientist Training Program (MSTP) at the University of California, San Francisco (UCSF). The MSTP has the goal of training the next generation of physician-investigators by offering a rigorous, integrated, and supportive educational experience leading to both M.D. and Ph.D. degrees. The UCSF MSTP offers the combination of an outstanding public medical school with an innovative curriculum, committed and renowned faculty, and a collection of premier graduate training programs. The program is currently in its 33rd year of continuous NIH support. From its inception, the guiding principles have been: (1) selecting outstanding students who are committed to careers as physician-investigators and who have the academic ability and interpersonal skills to excel in medicine and science;(2) offering the best possible training leading to combined M.D. and Ph.D. degrees without compromising the quality of training for either degree;and, (3) actively engaging the UCSF School of Medicine (SOM) and Graduate Programs to optimize the training path of each student and to encourage efficient completion of both degrees. During the current period of T32 support, our MSTP has continued to attract and train exceptional students who have a remarkable record of success. The leaders of the SOM have demonstrated an extraordinary level of commitment to the program, which has increased in size from 67 to 87 trainees. New activities to enhance and optimize the training of students have been added during the current period of support. Our trainees have formed a strong community that has engaged the faculty to enhance the training environment at UCSF. The achievements of our students and their subsequent track records underscore the value of this combined degree program. This application is directly relevant to the mission of the NIGMS and NIH as it requests funds to support mentored career development for the next generation of physician-scientists. This MSTP represents an investment in the future of our nation's health as the researchers who are trained through this award will be optimally prepared to harness discovery-based research strategies to attack urgent problems in human health with the goal of developing and implement innovative new treatments.

Public Health Relevance

Attacking complex diseases such as cancer, arthritis, and Alzheimer's dementia will require a new generation of researchers who are both outstanding physicians and skilled scientists who understand how to harness new technologies to advance human health. This application requests continuing support for the Medical Scientist Training Program at the University of California, San Francisco, which is achieving this goal by offering a rigorous, integrated, and supportive program that results in graduates who hold both M.D. and Ph.D. degrees.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
3T32GM007618-36S1
Application #
8704002
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Preusch, Peter C
Project Start
1978-07-01
Project End
2016-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
36
Fiscal Year
2013
Total Cost
$44,325
Indirect Cost
$2,123
Name
University of California San Francisco
Department
Pediatrics
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Gaber, Nadia; Wright, Anthony (2016) Protecting Urban Health and Safety: Balancing Care and Harm in the Era of Mass Incarceration. J Urban Health 93 Suppl 1:68-77
Soupene, Eric; Kao, Joseph; Cheng, Daniel H et al. (2016) Association of NMT2 with the acyl-CoA carrier ACBD6 protects the N-myristoyltransferase reaction from palmitoyl-CoA. J Lipid Res 57:288-98
Lindquist, Robert A; Guinto, Cristina D; Rodas-Rodriguez, Jose L et al. (2016) Identification of proliferative progenitors associated with prominent postnatal growth of the pons. Nat Commun 7:11628
Barruet, Emilie; Morales, Blanca M; Lwin, Wint et al. (2016) The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling. Stem Cell Res Ther 7:115
Gu, W; Crawford, E D; O'Donovan, B D et al. (2016) Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol 17:41
Kay, Kenneth; Sosa, Marielena; Chung, Jason E et al. (2016) A hippocampal network for spatial coding during immobility and sleep. Nature 531:185-90
Korczynska, Magdalena; Le, Daniel D; Younger, Noah et al. (2016) Docking and Linking of Fragments To Discover Jumonji Histone Demethylase Inhibitors. J Med Chem 59:1580-98
Mavor, David; Barlow, Kyle; Thompson, Samuel et al. (2016) Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. Elife 5:
Diaz, Aaron; Liu, Siyuan J; Sandoval, Carmen et al. (2016) SCell: integrated analysis of single-cell RNA-seq data. Bioinformatics 32:2219-20
Olow, Aleksandra; Mueller, Sabine; Yang, Xiaodong et al. (2016) BRAF Status in Personalizing Treatment Approaches for Pediatric Gliomas. Clin Cancer Res 22:5312-5321

Showing the most recent 10 out of 180 publications