The primary objective of this Pharmacological Sciences Training Grant is to develop scientists, equipped with the necessary background in the biological and chemical sciences and training in the application of modern tools of research and instrumental techniques, to undertake and direct fundamental research related to drug action, metabolism and kinetics. Trainees follow tracks that emphasize training in four broadly defined areas: (I) drug metabolism, (II) pharmacokinetics, drug transport and delivery, (III) cellular and molecular pharmacology and (IV) structure and drug design, that presently exist in the departments of Medicinal Chemistry, Pharmaceutics and Pharmacology. Didactic components involve individualized, highly multidisciplinary programs of coursework and seminars which center around the biological and chemical sciences. Researchcomponents of the program emphasize training in mechanistic and bioanalytical aspects of drug metabolism and toxicology, pharmacokinetics and pharmacodynamics, drug transporter function and regulation, pharmacogenetics, mechanisms and regulation of cell signaling, neuropharmacology and X-ray, NMR and proteomic approaches to structure elucidation of protein-ligand interactions of pharmacological interest. In this competitive renewal of the Pharmacological Sciences National Research Service Award program, support is requested for 16 predoctoral trainees in the first year increasing to 17 and 18 trainees, in the second and fourth years, respectively. The selection of trainees will be on a competitive basis primarily among second year or more advanced graduate students who are committed to research in one of the aforementioned areas.

Public Health Relevance

The training that is provided relates to how drugs used to treat human diseases and other disorders act on the body (pharmacology), and how the body acts on drugs (metabolism and pharmacokinetics). These fundamental areas of knowledge are critical to optimizing the use of drugs already on the market as well as ongoing national and international efforts to discover and develop new therapeutic agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007750-34
Application #
8286926
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
1979-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
34
Fiscal Year
2012
Total Cost
$604,613
Indirect Cost
$31,838
Name
University of Washington
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Conner, Kip P; Schimpf, Alina M; Cruce, Alex A et al. (2014) Strength of axial water ligation in substrate-free cytochrome P450s is isoform dependent. Biochemistry 53:1428-34
Shuster, Diana L; Risler, Linda J; Liang, Chao-Kang J et al. (2014) Maternal-fetal disposition of glyburide in pregnant mice is dependent on gestational age. J Pharmacol Exp Ther 350:425-34
Nangle, Shannon N; Rosensweig, Clark; Koike, Nobuya et al. (2014) Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. Elife 3:e03674
Kaspera, RĂ¼diger; Kirby, Brian J; Sahele, Tariku et al. (2014) Investigating the contribution of CYP2J2 to ritonavir metabolism in vitro and in vivo. Biochem Pharmacol 91:109-18
Lee, Nora; Duan, Haichuan; Hebert, Mary F et al. (2014) Taste of a pill: organic cation transporter-3 (OCT3) mediates metformin accumulation and secretion in salivary glands. J Biol Chem 289:27055-64
Guttman, Miklos; Garcia, Natalie K; Cupo, Albert et al. (2014) CD4-induced activation in a soluble HIV-1 Env trimer. Structure 22:974-84
Sager, J E; Lutz, J D; Foti, R S et al. (2014) Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther 95:653-62
Shuster, Diana L; Bammler, Theo K; Beyer, Richard P et al. (2013) Gestational age-dependent changes in gene expression of metabolic enzymes and transporters in pregnant mice. Drug Metab Dispos 41:332-42
Lee, Nora; Hebert, Mary F; Prasad, Bhagwat et al. (2013) Effect of gestational age on mRNA and protein expression of polyspecific organic cation transporters during pregnancy. Drug Metab Dispos 41:2225-32
Fredrickson, Eric K; Clowes Candadai, Sarah V; Tam, Cheuk Ho et al. (2013) Means of self-preservation: how an intrinsically disordered ubiquitin-protein ligase averts self-destruction. Mol Biol Cell 24:1041-52

Showing the most recent 10 out of 69 publications