The Harvard-MIT MD-PhD Program provides an integrated approach to educating physician-scientists to become leaders in American medicine and biomedical research. In this program, students combine medical studies at Harvard Medical School with graduate studies at Harvard or MIT. The program offers students arguably the largest selection of academic laboratories in the world for research training, complemented by outstanding teaching hospitals that are poised to rapidly translate basic discoveries into new clinical applications. Students choose between two medical education curricula: a case based approach that combines small-group teaching and problem-oriented learning with more traditional teaching methods (New Pathway), or a traditional curriculum with an emphasis on quantitative analysis and technology (Health Sciences and Technology). Both curricula include rigorous clinical clerkships at the Harvard teaching hospitals. Students also choose from among the four graduate programs in the Division of Medical Sciences at Harvard Medical School, other graduate programs in the Harvard Graduate School of Arts and Sciences, and programs in the Graduate Schools of Science and Engineering at MIT. The medical and scientific training components are integrated throughout the program, beginning with a course in the Molecular Biology of Human Disease and a laboratory research rotation that are taken by all MSTP students during the summer before the first academic year. Although not all MD-PhD students are awarded funding at the time of matriculation, the program is designed to include all students at Harvard Medical School who are simultaneously pursuing the MD and PhD degrees. Unfunded students can enter the program at the time of enrollment in a PhD program. The program provides academic and mentoring support to approximately 148 students, taking advantage of a large, committed faculty. Approximately faculty members are directly involved with the program through service on program committees and/or participation as MD-PhD student thesis advisors. Mentoring, advising, and all program activities are available both to students who are funded by MSTP and to students who are not. Other training grants, individual NIH investigator (R01) awards, individual student fellowships, departmental funds, hospital funds and unrestricted institutional funds are used to supplement MSTP student support.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Preusch, Peter C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Medicine
United States
Zip Code
Tu, Xiaoguang; Xie, Mei; Gao, Jingjing et al. (2017) Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network. Sci Rep 7:8533
Nakayama, Robert T; Pulice, John L; Valencia, Alfredo M et al. (2017) SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Genet 49:1613-1623
Engblom, Camilla; Pfirschke, Christina; Zilionis, Rapolas et al. (2017) Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358:
Byrne, Elizabeth H; Fisher, David E (2017) Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer 123:2143-2153
Park, Ryan J; Wang, Tim; Koundakjian, Dylan et al. (2017) A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 49:193-203
McConnell, Michael J; Moran, John V; Abyzov, Alexej et al. (2017) Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 356:
Stevens, Kelly R; Scull, Margaret A; Ramanan, Vyas et al. (2017) In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci Transl Med 9:
Yan, Winston X; Mirzazadeh, Reza; Garnerone, Silvano et al. (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8:15058
Bodnar, Nicholas; Rapoport, Tom (2017) Toward an understanding of the Cdc48/p97 ATPase. F1000Res 6:1318
Zhang, Yanhui; Xie, Litao; Gunasekar, Susheel K et al. (2017) Erratum: SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat Cell Biol 19:740

Showing the most recent 10 out of 814 publications