The Johns Hopkins Predoctoral Training Program in Human Genetics (JHHG) has grown steadily since its inception in 1980 in parallel to the spectacular growth of genetics and genomics and their application to medicine over the last three decades. Similarly, the Johns Hopkins School of Medicine continues to make commitments to human genetics as evidenced by the establishment of the McKusick-Nathans Institute of Genetic Medicine in 1999, provision of state of the art research space in 2004 and the introduction in 2009 of a new medical school curriculum, The Genes to Society curriculum, that has genetics and genetic-thinking as an organizing principle. The overall objective of the JHHG is to provide our students with a strong foundation in basic science by exposure to a rigorous graduate education in genetics, genomics, molecular biology, cell biology and biochemistry plus a core of medically-related courses selected to provide knowledge of human biology in health and disease. Through seminars, laboratory rotations and thesis work, our students are also exposed to a wide variety of modern research technologies relevant to human genetics and learn the basic skills necessary to become an independent investigator. The research activities of the 63 JHHG preceptors are diverse and include human and model organism genetics and genomics, developmental genetics, identification and analysis of genes and genetic variants responsible for human monogenic disorders and complex traits, molecular cytogenetic, quantitative genetics, gene therapy, oncogenetics, stem cell genetics and studies of the ethical and societal consequences of the genetic revolution. This broad spectrum of research activities in human genetics provides virtually unlimited opportunities for our students to work on projects appealing to their individual interests. The ultimate goal of our program is to produce independent investigators who are well- versed in human biology in health and disease and in all aspects of human genetics and genomics. Equipped wit this education, our students are well prepared to answer important basic science questions and to translate this information into medical advances. The success of our graduates, who obtain postdoctoral positions in top laboratories and go on to productive academic careers in top universities, strongly supports this conclusion.

Public Health Relevance

Advances in human genetics and genomics are being made at an astounding rate while their application to medicine is proceeding at a much slower pace. The Johns Hopkins Predoctoral Training Program in Human Genetics aims to provide highly motivated and capable students with knowledge and experimental tools that will enable them to answer important questions at the interface between genetics and medicine. Ultimately, our trainees will play an important role in delivering the promise of genetics to human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007814-32
Application #
8500318
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Carter, Anthony D
Project Start
1980-07-01
Project End
2017-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
32
Fiscal Year
2013
Total Cost
$455,509
Indirect Cost
$27,593
Name
Johns Hopkins University
Department
Genetics
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Lee, Melissa; Roos, Patrick; Sharma, Neeraj et al. (2017) Systematic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites. Am J Hum Genet 100:751-765
Doyle, Glenn A; Doucet-O'Hare, Tara T; Hammond, Matthew J et al. (2017) Reading LINEs within the cocaine addicted brain. Brain Behav 7:e00678
Introne, Wendy J; Westbroek, Wendy; Groden, Catherine A et al. (2017) Neurologic involvement in patients with atypical Chediak-Higashi disease. Neurology 88:e57-e65
Tang, Zuojian; Steranka, Jared P; Ma, Sisi et al. (2017) Human transposon insertion profiling: Analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc Natl Acad Sci U S A 114:E733-E740
Rodriguez Pena, Maria Del Carmen; Tregnago, Aline C; Eich, Marie-Lisa et al. (2017) Spectrum of genetic mutations in de novo PUNLMP of the urinary bladder. Virchows Arch :
Ashar, Foram N; Zhang, Yiyi; Longchamps, Ryan J et al. (2017) Association of Mitochondrial DNA Copy Number With Cardiovascular Disease. JAMA Cardiol 2:1247-1255
Ardeljan, Daniel; Taylor, Martin S; Ting, David T et al. (2017) The Human Long Interspersed Element-1 Retrotransposon: An Emerging Biomarker of Neoplasia. Clin Chem 63:816-822
Payer, Lindsay M; Steranka, Jared P; Yang, Wan Rou et al. (2017) Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc Natl Acad Sci U S A 114:E3984-E3992
Weng, Yi-Lan; An, Ran; Cassin, Jessica et al. (2017) An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron 94:337-346.e6
Mattox, Austin K; Wang, Yuxuan; Springer, Simeon et al. (2017) Bisulfite-converted duplexes for the strand-specific detection and quantification of rare mutations. Proc Natl Acad Sci U S A 114:4733-4738

Showing the most recent 10 out of 188 publications