The University of Virginia consistently ranks as one of the top public universities in the nation. One of its strengths is biomedical research where it has focused on areas of cell and molecular biology. The University has built outstanding biomedical sciences (four of seven biomedical science departments are ranked in the top 10 in the nation) despite its relatively small size. It has done this by focusing on strong graduate training and cooperation among members of different departments in the School of Medicine, the School of Engineering, and the College of Arts and Sciences. For 27 years the interdisciplinary Cell and Molecular Biology Graduate Program (CMB), whose faculty derives from 10 degree-granting departments and programs, has been bringing together the best biomedical graduate students and faculty from around the campus to generate a training forum that complements what can be learned in a laboratory. CMB training emphasizes exposing students to areas and techniques outside of their expertise, by working with faculty and students from other departments and disciplines. Both one on one as well as group interactions are fostered. Students join the program in their second year, are supported by the training grant for two years, and remain associated with the program until they graduate. The training focuses on the second and third years in graduate school when students are learning to apply class knowledge towards independent thinking and practical use of the scientific method. The CMB program seeks to intensify this transformative period by nurturing the students through a series of poster sessions, data clubs, mixers, symposia and social events that expose the students to outstanding multi- disciplinary science. They learn to present their research and take ownership and pride in their own scientific accomplishments. The success of our trainees shows that the CMB program prepares them for outstanding research and/or teaching careers in academia or industry. Central to America's future is the training of the next generation of America's scientists. This is especially true for the biomedical sciences, which will continue to have an increasing role in both improving health as well as acting as an engine of economic growth. We propose to continue a 27 year old training program designed to complement the training of the best graduate students in Cell and Molecular Biology (CMB) at the University of Virginia with a program designed to nurture young scientists through the transformative period when they lean to apply class knowledge towards independent thinking and practical use of the scientific method. This CMB program at Virginia has a long and distinguished history in training outstanding scientists. This program is still very vital and will continue this tradition.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008136-27
Application #
8294568
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
1985-07-01
Project End
2016-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
27
Fiscal Year
2012
Total Cost
$465,007
Indirect Cost
$25,471
Name
University of Virginia
Department
Biochemistry
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Gamage, Kanchana K; Cheng, Irene; Park, Rachel E et al. (2017) Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons. Curr Biol 27:1250
Norambuena, Andrés; Wallrabe, Horst; McMahon, Lloyd et al. (2017) mTOR and neuronal cell cycle reentry: How impaired brain insulin signaling promotes Alzheimer's disease. Alzheimers Dement 13:152-167
Carey, Maureen A; Papin, Jason A; Guler, Jennifer L (2017) Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance. BMC Genomics 18:543
Weaver, Janelle L; Arandjelovic, Sanja; Brown, Gregory et al. (2017) Hematopoietic pannexin 1 function is critical for neuropathic pain. Sci Rep 7:42550
Lee, Jinwoo; Nyenhuis, David A; Nelson, Elizabeth A et al. (2017) Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc Natl Acad Sci U S A 114:E7987-E7996
Yang, Chun-Song; Melhuish, Tiffany A; Spencer, Adam et al. (2017) The protein kinase C super-family member PKN is regulated by mTOR and influences differentiation during prostate cancer progression. Prostate 77:1452-1467
Sabik, Olivia L; Farber, Charles R (2017) Using GWAS to identify novel therapeutic targets for osteoporosis. Transl Res 181:15-26
Anderson, Anoush E; Taniguchi, Kenichiro; Hao, Yi et al. (2017) Tgif1 and Tgif2 Repress Expression of the RabGAP Evi5l. Mol Cell Biol 37:
Swanson, Eric; Breckenridge, Leigham; McMahon, Lloyd et al. (2017) Extracellular Tau Oligomers Induce Invasion of Endogenous Tau into the Somatodendritic Compartment and Axonal Transport Dysfunction. J Alzheimers Dis 58:803-820
Dawidziak, Daria M; Sanchez, Jacint G; Wagner, Jonathan M et al. (2017) Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase. Proteins 85:1957-1961

Showing the most recent 10 out of 165 publications