This proposal aims to secure training grant stipends and associated support for students during their first two years in the UCSF/UCB Joint Graduate Group in Bioengineering (JBBG). Over the past 25 years, the JBBG has awarded Ph.D.s in Bioengineering to 221 students, with 86 of these receiving stipends from this NIH Training Grant Award. Such stipends are the backbone for the unique JGGB structure, which requires that students have financial support during their first two years. These initial two years of preparation include intensive course work in engineering and the biomedical sciences, as well as three laboratory rotations, are essential to the students in selecting appropriate dissertation research topics. In later year the students receive financial support through their research mentor. The JGGB bridges two University of California campuses that possess complementary strengths: UCSF is a leading Health Sciences institution and UC Berkeley's Engineering School is a national leader in the physical sciences. The breadth and depth of the training environment offered to students is of an order larger than a single department could provide. Over 170 faculty based in 25 departments participate in the JGGB. Their laboratories include an array of state-of-the art facilities. An academic and intellectual environment fosters seamless interaction between physical and life sciences and that trains students to solve complex biological problems with an emphasis on translational research is in high demand. The JGGB has an established record of such integration, and the breadth of opportunity for collaboration is one of the reasons that the program is structured to have students spend two years concentrating on a variety of laboratory rotations and course work prior to committing to their dissertation project. With the recent expansion of Bioengineering research and educational programs at UCSF and UCB, the capacity for training graduate students has increased and the size of the student body has grown from 148 to 173. This training grant is a critical component of the support package that students are offered, and it has therefore become increasingly important for ensuring that they flourish in the present competitive environment. Because qualified applicants far exceed the number of students that can be admitted into the JGGB, we are requesting an increase in the number of slots during the next funding cycle from the current recommended level of 17 to 25 students. The unique ability for bioengineers to integrate principles from diverse fields and thereby span the gap between advances in basic science and clinical utilization places individuals trained in this field at a critical point in advancing a translational research agenda that has been recently highlighted by new organizations within the NIH.

Public Health Relevance

The health and life sciences are in the midst of a profound revolution due to new technology and quantitative approaches developed in the disciplines of chemistry, biology, physics and engineering. These advances, along with the aging of the population and the focus on health issues will increase the demand for better medical devices, techniques, and therapeutic modalities. The JGGB is making a significant contribution to meeting these societal needs by training the next generation of bioengineers.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Maas, Stefan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Pharmacy
San Francisco
United States
Zip Code
Kim, Jean; Kudisch, Max; Mudumba, Sri et al. (2016) Biocompatibility and Pharmacokinetic Analysis of an Intracameral Polycaprolactone Drug Delivery Implant for Glaucoma. Invest Ophthalmol Vis Sci 57:4341-6
Niekamp, Stefan; Blumer, Katy; Nafisi, Parsa M et al. (2016) Folding complex DNA nanostructures from limited sets of reusable sequences. Nucleic Acids Res 44:e102
Gaj, Thomas; Epstein, Benjamin E; Schaffer, David V (2016) Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applications. Mol Ther 24:458-64
Matthys, Oriane B; Hookway, Tracy A; McDevitt, Todd C (2016) Design Principles for Engineering of Tissues from Human Pluripotent Stem Cells. Curr Stem Cell Rep 2:43-51
Chen, Baohui; Hu, Jeffrey; Almeida, Ricardo et al. (2016) Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res 44:e75
Lee, Phin P; Desai, Tejal A (2016) Nitinol-Based Nanotubular Arrays with Controlled Diameters Upregulate Human Vascular Cell ECM Production. ACS Biomater Sci Eng 2:409-414
Bautista, Catherine A; Park, Hee Jun; Mazur, Courtney M et al. (2016) Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage. PLoS One 11:e0158976
Song, Shang; Faleo, Gaetano; Yeung, Raymond et al. (2016) Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport. Sci Rep 6:23679
Dichter, Benjamin K; Bouchard, Kristofer E; Chang, Edward F (2016) Dynamic Structure of Neural Variability in the Cortical Representation of Speech Sounds. J Neurosci 36:7453-63
Lance, Kevin D; Bernards, Daniel A; Ciaccio, Natalie A et al. (2016) In vivo and in vitro sustained release of ranibizumab from a nanoporous thin-film device. Drug Deliv Transl Res 6:771-780

Showing the most recent 10 out of 56 publications