Molecular biophysics at the University of Pennsylvania has a long and rich history. Eldridge Reeves Johnson, the former president of the Victor Talking Machine Company (RCA), gave the University a generous endowment in 1927 to establish first organization in this country dedicated to medical physics. The Johnson Foundation (JF) was established for the """"""""study and development of physical methods in the investigation of disease and in its cure."""""""" Under the initial leadership of Detlev Bronk and then Britton Chance, the JF established Penn as a world-center for physical biochemistry and biophysics. Investigators in the JF expanded methods for studying action potentials, developed innovative techniques of biological oxygen detection, introduced a range of instrumentation for study of fast reactions, explored applications of new technologies such as ultrasound, electron microscopy, EPR, NMR and MRI. The Johnson Foundation, now under the direction of P. Leslie Dutton, has continued to evolve and expand into structural and computational biology, high-resolution NMR spectroscopy, protein dynamics &folding and single molecule approaches to a variety of fundamental questions in human biology. The JF is centered in a dynamic department of Biochemistry &Biophysics that is focused on quantitative biochemistry and biophysics. It is in this strong framework that the training program in Structural Biology and Molecular Biophysics promotes the application of structural biology and molecular biophysics to clinically relevant research. It is the flagship predoctoral training program for quantitative biology in the medical school and arguably for the entire University. The fundamental goal of our training mission is to produce biophysicists who can effectively integrate and apply the physical methodologies to medically relevant research problems. Our program explicitly integrates human biology and pathology into the graduate curriculum. The SBMB training program is designed to produce well-rounded scientists with expertise in structural biology and biophysics as well as have a solid foundation in biomedical sciences and disease. Historically, our trainees come to the program with diverse educational backgrounds that range from physics, chemistry, biology, engineering and biochemistry, even pure math. To accommodate this diversity, the training program provides extensive flexibility in the construction of personalized curricula. The research resources offered by the University of Pennsylvania are matched by few universities in the world. Importantly, the fact that all schools of the University are located on one contiguous campus provides a significant advantage for collaborative interactions across disciplines, something that is important to structural biology and molecular biophysics. The faculty provided by this training program are creative, well-funded investigators with a demonstrable track-record of teaching and mentorship. With the emergence of translational medicine as a priority it seems a priority to maintain a broadly educated capability in structural biology and molecular biophysics and, with this in mind, the program at the University of Pennsylvania is designed to produce well- trained and synoptically thinking biophysical scientists.

Public Health Relevance

Basic research in structural biology and molecular biophysics provides the foundation upon which modern medicine rests. This training program in structural biology and molecular biophysics seeks to provide a creative and comprehensive environment for training the leaders of the future. It will do so by sustaining a rigorous program in these ares while providing a strong biomedical context. The emphasis on quantitative aspects of biology is both timely and necessary to maintain the strength of the United States'leadership in biomedical research.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM008275-26
Application #
8550478
Study Section
(TWD)
Program Officer
Flicker, Paula F
Project Start
1988-09-30
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
26
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Gates, Stephanie N; Yokom, Adam L; Lin, JiaBei et al. (2017) Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science 357:273-279
Fuglestad, Brian; Stetz, Matthew A; Belnavis, Zachary et al. (2017) Solution NMR investigation of the response of the lactose repressor core domain dimer to hydrostatic pressure. Biophys Chem 231:39-44
Stankovic, Ana; Guo, Lucie Y; Mata, João F et al. (2017) A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly. Mol Cell 65:231-246
Lippert, Lisa G; Dadosh, Tali; Hadden, Jodi A et al. (2017) Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proc Natl Acad Sci U S A 114:E4564-E4573
Freed, Daniel M; Bessman, Nicholas J; Kiyatkin, Anatoly et al. (2017) EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell 171:683-695.e18
Rivera-Santiago, Roland; Harper, Sandra L; Sriswasdi, Sira et al. (2017) Full-Length Anion Exchanger 1 Structure and Interactions with Ankyrin-1 Determined by Zero Length Crosslinking of Erythrocyte Membranes. Structure 25:132-145
Papillon-Cavanagh, Simon; Lu, Chao; Gayden, Tenzin et al. (2017) Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet 49:180-185
Pulsipher, Katherine W; Villegas, Jose A; Roose, Benjamin W et al. (2017) Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion. Biochemistry 56:3596-3606
Cai, J; Townsend, J P; Dodson, T C et al. (2017) Eye patches: Protein assembly of index-gradient squid lenses. Science 357:564-569
Zelent, Bogumil; Bialas, Chris; Gryczynski, Ignacy et al. (2017) Tryptophan Fluorescence Yields and Lifetimes as a Probe of Conformational Changes in Human Glucokinase. J Fluoresc :

Showing the most recent 10 out of 199 publications