This application seeks renewal of the highly successful Molecular Biophysics Predoctoral Training Grant Program at Columbia University. Training for students in the Program is performed in the Departments of Biochemistry and Molecular Biophysics at Columbia University Medical Center and the Departments of Biological Sciences and Chemistry on the Arts and Sciences campus of Columbia University. The Program provides a rich and diverse environment in which students apply a host of biophysical approaches to the investigation of important biological problems. The Program emphasizes the application of state-of-the-art biophysical techniques to provide trenchant answers to detailed, specific questions while at the same time it endeavors to expose the trainees to a vast array of biological processes and to fertile areas of future research. The Training Program consists of exceptional laboratories housed in three departments and outstanding facilities located on the two campuses;seminars in biophysics given by outstanding visiting speakers;a biophysics retreat where trainees present their research to students, postdoctoral fellows, and faculty in the Program;and a core, year-long biophysics course. Over the past five years since the last competitive renewal, the Training Program has made important strides in several critical areas: (i) three underrepresented minority students in the Program completed doctoral training and received the Ph.D.,(ii) the number of underrepresented minority students currently in the Program matches the all-time high of five, and (iii) several new trainers have been brought into the Program. In the coming five-year period, the Program will continue to (i) reinforce ties between participating laboratories, departments and campuses,(ii) improve the recruitment of all students, with an emphasis on underrepresented minority students, (iii)recruit additional talented faculty, and (iv) strengthen and update the pedagogical component of the program. The past historical successes and anticipated future achievements in the next funding period of the Molecular Biophysics Training Grant Program at Columbia will maintain this Program as a flagship for education and training of graduate students in New York City.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Schools of Medicine
New York
United States
Zip Code
Solsona, Carles; Kahn, Thomas B; Badilla, Carmen L et al. (2014) Altered thiol chemistry in human amyotrophic lateral sclerosis-linked mutants of superoxide dismutase 1. J Biol Chem 289:26722-32
Thu, Chan Aye; Chen, Weisheng V; Rubinstein, Rotem et al. (2014) Single-cell identity generated by combinatorial homophilic interactions between ?, ?, and ? protocadherins. Cell 158:1045-59
Zhu, Kai; Day, Tyler; Warshaviak, Dora et al. (2014) Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins 82:1646-55
Kinz-Thompson, Colin D; Gonzalez Jr, Ruben L (2014) smFRET studies of the 'encounter' complexes and subsequent intermediate states that regulate the selectivity of ligand binding. FEBS Lett 588:3526-38
Boël, Grégory; Smith, Paul C; Ning, Wei et al. (2014) The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat Struct Mol Biol 21:143-51
Oswald, Victoria F; Chen, WeiTing; Harvilla, Paul B et al. (2014) Overexpression, purification, and enthalpy of unfolding of ferricytochrome c552 from a psychrophilic microorganism. J Inorg Biochem 131:76-8
Harvilla, Paul B; Wolcott, Holly N; Magyar, John S (2014) The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H. Metallomics 6:1126-30
Friesner, Richard A; Abel, Robert; Goldfeld, Dahlia A et al. (2013) Computational methods for high resolution prediction and refinement of protein structures. Curr Opin Struct Biol 23:177-84
Kim, Dorothy M; Zheng, Haiyan; Huang, Yuanpeng J et al. (2013) ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase. J Am Chem Soc 135:2999-3010
Elvekrog, Margaret M; Gonzalez Jr, Ruben L (2013) Conformational selection of translation initiation factor 3 signals proper substrate selection. Nat Struct Mol Biol 20:628-33

Showing the most recent 10 out of 48 publications