This application is for a renewal of the Training Program in the Pharmacological Sciences to support seven outstanding predoctoral students who will be working for a Ph.D. degree in Pharmacological and Physiological Science or the program of their mentor with research emphasis on cellular communication and control exerted through the endocrine, cardiovascular and nervous system. This is a broadly based, multidisciplinary effort which involves 28 faculty from six departments in the School of Medicine at Saint Louis University. These include: Pharmacological and Physiological Science;Biochemistry and Molecular Biology;Chemistry;Internal Medicine;and Ophthalmology. Students will be selected from among candidates entering the Pharmacological and Physiological Science or the program of their mentor after successfully completing the one year Core Program in Basic Biomedical Science, M.D./Ph.D. students who have completed the basic science curriculum and now wish to obtain the Ph.D. degree in Pharmacological and Physiological Science or the program of their mentor and finally students who enter the Pharmacological and Physiological Science Program with an advanced standing. During the first year of study, all traditional Ph.D. students will participate in the interdisciplinary Core Graduate Program in Biomedical Sciences. This program has been designed to provide students with a strong foundation in all aspects of basic biomedical science and the freedom to explore diverse research opportunities. The curriculum combines lectures, small group discussion and seminars. Students completing the Core Program, M.D./Ph.D. students or students with M.S. degrees will enter the program in Pharmacological and Physiological Science or the program of their mentor and take advanced courses, journal clubs and seminars. Subsequent training for all Ph.D. candidates will concentrate on the development of research and teaching competence in a specific area of inquiry under the mentorship of one or more members of the Pharmacological Sciences Training Faculty. The mentors and laboratories participating in this program are well equipped to provide state-of-the-art research training. In addition, core and shared facilities for advanced technologies are available for enhancement of the research training of the participating candidates. The overall objectives of this training program are to provide individuals with the opportunity to achieve a high degree of competence in the area of pharmacological sciences thus preparing them for teaching and research careers.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Saint Louis University
Schools of Medicine
Saint Louis
United States
Zip Code
Lavezzi, Heather N; Parsley, Kenneth P; Zahm, Daniel S (2015) Modulation of locomotor activation by the rostromedial tegmental nucleus. Neuropsychopharmacology 40:676-87
Zahm, Daniel S; Schwartz, Zachary M; Lavezzi, Heather N et al. (2014) Comparison of the locomotor-activating effects of bicuculline infusions into the preoptic area and ventral pallidum. Brain Struct Funct 219:511-26
Yetnikoff, L; Lavezzi, H N; Reichard, R A et al. (2014) An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282C:23-48
Adams, Robert D; Rendell, Sara R; Counts, Lauren R et al. (2014) Electrical and neurotrophin enhancement of neurite outgrowth within a 3D collagen scaffold. Ann Biomed Eng 42:1282-91
Cox, Jane A; LaMora, Angela; Johnson, Stephen L et al. (2014) Novel role for carbamoyl phosphate synthetase 2 in cranial sensory circuit formation. Int J Dev Neurosci 33:41-8
Finley, Amanda; Chen, Zhoumou; Esposito, Emanuela et al. (2013) Sphingosine 1-phosphate mediates hyperalgesia via a neutrophil-dependent mechanism. PLoS One 8:e55255
Pate, Alicia T; Yosten, Gina L C; Samson, Willis K (2013) Neuropeptide W increases mean arterial pressure as a result of behavioral arousal. Am J Physiol Regul Integr Comp Physiol 305:R804-10
Yosten, Gina L C; Pate, Alicia T; Samson, Willis K (2011) Neuronostatin acts in brain to biphasically increase mean arterial pressure through sympatho-activation followed by vasopressin secretion: the role of melanocortin receptors. Am J Physiol Regul Integr Comp Physiol 300:R1194-9
Macarthur, H; Wilken, G H; Westfall, T C et al. (2011) Neuronal and non-neuronal modulation of sympathetic neurovascular transmission. Acta Physiol (Oxf) 203:37-45
Cox, Jane A; Lamora, Angela; Johnson, Stephen L et al. (2011) Diverse mechanisms for assembly of branchiomeric nerves. Dev Biol 357:305-17

Showing the most recent 10 out of 27 publications