The Molecular Biophysics Training Grant at Harvard supports a predoctoral training program focused at the interface of the physical and biological sciences. The goal of the program is to provide students with strong undergraduate backgrounds in quantitative sciences (especially physics and mathematics) with broad training in the biophysical, chemical and molecular concepts and techniques that are required to address outstanding problems in biology and biomedical sciences. The training program links a highly interactive group of 46 faculty members from five departments in Harvard's Faculty of Arts and Sciences, the School of Engineering and Applied Sciences, five departments at Harvard Medical School, and four affiliated hospitals. The training program offers a flexible curriculum drawn from courses offered at Harvard, Harvard Medical School, and MIT, and offers research opportunities in a variety of disciplines relevant to molecular biophysics with particular strengths in the areas of structural biology, computational biology, neuroscience, and imaging. In addition to coursework and research activities, the training program sponsors seminars and guest lectures;a student run, student research seminar series;a yearly retreat featuring a poster session and student and faculty talks in the fall semester;a poster session featuring research of program students;a mini- symposium featuring talks by program faculty during the Biophysics Program recruiting weekend in the spring semester;and social events for all trainees. Over the past 24 years, this training program has helped foster a number of new initiatives in graduate training, and has been remarkably successful in promoting collaborative research among its faculty and interdisciplinary training for its students. In this competitive renewal we request support for 16 training slots for students who are affiliated with Harvard's Biophysics Program or who are jointly affiliated with the Harvard Biophysics Program and Medical Engineering and Medical Physics (MEMP) Ph.D. program in the joint Harvard/MIT Health Sciences and Technology initiative (HST). Students will be preferentially funded in their first and second year of graduate studies.

Public Health Relevance

This training program offers interdisciplinary training at the interface between biology and physics in approaches to explore the structure, function and interactions key macromolecules of the cell, the control of cellular processes at the molecular and genome-wide levels, the development of approaches to imaging and modeling these processes, and ultimately the use of this information to diagnose, understand, prevent or cure human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM008313-26
Application #
8607736
Study Section
(TWD)
Program Officer
Flicker, Paula F
Project Start
1989-07-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
26
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Harvard Medical School
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Stolte, Björn; Iniguez, Amanda Balboni; Dharia, Neekesh V et al. (2018) Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma. J Exp Med 215:2137-2155
Wang, Songyu; Powers, Robert E; Gold, Vicki Am et al. (2018) The ER morphology-regulating lunapark protein induces the formation of stacked bilayer discs. Life Sci Alliance 1:e201700014
Lin, Jia-Ren; Izar, Benjamin; Wang, Shu et al. (2018) Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife 7:
Kimchi, Ofer; Veatch, Sarah L; Machta, Benjamin B (2018) Ion channels can be allosterically regulated by membrane domains near a de-mixing critical point. J Gen Physiol 150:1769-1777
Jenkins, Russell W; Aref, Amir R; Lizotte, Patrick H et al. (2018) Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 8:196-215
Harris, Nicholas C; Born, David A; Cai, Wenlong et al. (2018) Isonitrile Formation by a Non-Heme Iron(II)-Dependent Oxidase/Decarboxylase. Angew Chem Int Ed Engl 57:9707-9710
Bitran, Amir; Chiang, Wei-Yin; Levine, Erel et al. (2017) Mechanisms of fast and stringent search in homologous pairing of double-stranded DNA. PLoS Comput Biol 13:e1005421
Kim, Y Bill; Komor, Alexis C; Levy, Jonathan M et al. (2017) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35:371-376
Wachter, F; Morgan, A M; Godes, M et al. (2017) Mechanistic validation of a clinical lead stapled peptide that reactivates p53 by dual HDM2 and HDMX targeting. Oncogene 36:2184-2190
Powers, Robert E; Gaudet, Rachelle; Sotomayor, Marcos (2017) A Partial Calcium-Free Linker Confers Flexibility to Inner-Ear Protocadherin-15. Structure 25:482-495

Showing the most recent 10 out of 91 publications