The Biotechnology Training Program (BTP) at the University of Wisconsin-Madison trains researchers to use cross-disciplinary approaches at the interface of the biological and physical sciences as they solve important biomedical research problems. BTP trainees are admitted to one of four core academic programs contributing to the BTP (Integrated Program in Biochemistry, Chemistry, Chemical Engineering, or Microbiology) or to another approved doctoral program on the UW campus. Upon selection of a mentor, who must be an approved BTP trainer, BTP trainees fulfill all Ph.D. requirements of their home department. Thus the BTP first integrates the existing academic excellence of our participating Ph.D.-granting units into our comprehensive training plan. This aspect of the BTP program assures that each BTP trainee receives the depth of discipline-specific training needed to become a future leader in his or her respective field. The BTP significantly enhances the educational experience and distinguishes all BTP trainees from their peers by providing requirements specifically designed to promote cross-disciplinary research training. These include 1) a BTP-approved biotechnology-oriented minor degree plan, 2) interactions with a BTP minor professor from another discipline during the entire dissertation period, 3) oral presentations in the BTP-led Biotechnology Seminar program, 4) participation in a BTP-originated Foundations of Cross-Disciplinary Research course, 5) completion of the BTP-led research ethics course, and 6) an industrial internship. These enhanced training experiences ensure that all BTP trainees, regardless of their major Ph.D. program, will be conversant in the principles of molecular biology, genetics, biochemistry, physiology, and quantitative sciences required to function as cross-disciplinary scientists and engineers in the 21st century. In its 19-year history, the BTP has trained 223 Ph.D. students who have worked with 125 different faculty BTP trainers in 25 distinct Ph.D. programs. Our BTP graduates are now emerging as prominent scientists in industry and federal laboratories, and as professors in academia. Other UW students can participate in BTP activities and thus expand the breadth and impact of cross-disciplinary training across campus. Broader participation also increases exposure of BTP trainees to recent technological advances that are being used to solve emerging problems at the biological-physical science interface. The UW-Madison is proud to partner with NIH in continuing to provide vigorous support for training of the 30 NIGMS-funded trainees that comprise the BTP, and who collectively represent a strong promise and hope for sustained national prominence in biomedical research.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Schools of Earth Sciences/Natur
United States
Zip Code
Cook, Taylor B; Rand, Jacqueline M; Nurani, Wasti et al. (2018) Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol Biotechnol 45:517-527
Lapointe, Christopher P; Stefely, Jonathan A; Jochem, Adam et al. (2018) Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis. Cell Syst 6:125-135.e6
England, Christopher G; Jiang, Dawei; Ehlerding, Emily B et al. (2018) 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 45:110-120
Venturelli, Ophelia S; Carr, Alex C; Fisher, Garth et al. (2018) Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14:e8157
Gastfriend, Benjamin D; Palecek, Sean P; Shusta, Eric V (2018) Modeling the blood-brain barrier: Beyond the endothelial cells. Curr Opin Biomed Eng 5:6-12
Pinkert, Michael A; Salkowski, Lonie R; Keely, Patricia J et al. (2018) Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 5:010901
Stebbins, Matthew J; Lippmann, Ethan S; Faubion, Madeline G et al. (2018) Activation of RAR?, RAR?, or RXR? Increases Barrier Tightness in Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells. Biotechnol J 13:
DeLaney, Kellen; Sauer, Christopher S; Vu, Nhu Q et al. (2018) Recent Advances and New Perspectives in Capillary Electrophoresis-Mass Spectrometry for Single Cell ""Omics"". Molecules 24:
Hennings, Thomas G; Chopra, Deeksha G; DeLeon, Elizabeth R et al. (2018) In Vivo Deletion of ?-Cell Drp1 Impairs Insulin Secretion Without Affecting Islet Oxygen Consumption. Endocrinology 159:3245-3256
Schaffer, Leah V; Rensvold, Jarred W; Shortreed, Michael R et al. (2018) Identification and Quantification of Murine Mitochondrial Proteoforms Using an Integrated Top-Down and Intact-Mass Strategy. J Proteome Res 17:3526-3536

Showing the most recent 10 out of 524 publications