This application seeks continuing support for the 5-year period 07/01/2009 to 06/31/2014 for a NIH training program directed at providing predoctoral graduate students with a cross-disciplinary educational experience in biotechnology. The Stanford program began on 07/01/1991 and was funded through 06/30/2006 and with a supplemental funding through 06/31/2007. It draws on a 36 faculty mentors from 12 departments and 3 schools at the university. This training program enables us to coordinate and focus efforts on preparing predoctoral students for careers in the emerging field in biotechnology. Emphasis is placed on creating on environmental that reveals to students the diverse areas encompassed by the life, chemical, physical, and engineering sciences. We offer students opportunities to cross traditional departmental and disciplinary lines thus increasing their awareness of the tenets and practices of scientific and engineering endeavors that otherwise might not be readily accessible in the absence of such a program.
Our aim i s to educate and train students to cope with the issues and challenges biotechnology presents, and to insure that these students are equipped with the understanding and methodologies needed for them to make contributions towards the development and refinement of basic and applied principles of biotechnology. No other training grant program at Stanford University offers the breadth of experience or the direct environment of as many different departments across as many schools as does this one. This, we believe, is the distinguishing feature that sets this program apart from others on our campus. Stanford University is well suited for conducting this kind of multidisciplinary program. The intellectual elements required for such as endeavor are in place. Relevance: The facilities and infrastructure are excellent. Moreover, the biotechnology industry has deep roots in the San Francisco bay area, and during the past 15 years this program has fostered increasingly diverse links with the commercial sector as a means to providing students with additional industrial partners join in the efforts.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Kariolis, Mihalis S; Miao, Yu Rebecca; Jones 2nd, Douglas S et al. (2014) An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis. Nat Chem Biol 10:977-83
Zhang, Han; Egger, Rachel L; Kelliher, Timothy et al. (2014) Transcriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3 (Bethesda) 4:993-1010
Mendez, Derek; Lane, Thomas J; Sung, Jongmin et al. (2014) Observation of correlated X-ray scattering at atomic resolution. Philos Trans R Soc Lond B Biol Sci 369:20130315
Schindler, Tony D; Chen, Lu; Lebel, Paul et al. (2014) Engineering myosins for long-range transport on actin filaments. Nat Nanotechnol 9:33-8
Kelliher, Timothy; Walbot, Virginia (2014) Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. Plant J 77:639-52
Liske, Holly; Qian, Xiang; Anikeeva, Polina et al. (2013) Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2. Sci Rep 3:3110
Gao, Li; Kelliher, Timothy; Nguyen, Linda et al. (2013) Ustilago maydis reprograms cell proliferation in maize anthers. Plant J 75:903-14
Wiseman, Meredith E; Frank, Curtis W (2012) Antibody adsorption and orientation on hydrophobic surfaces. Langmuir 28:1765-74
Greenfeld, Max; Pavlichin, Dmitri S; Mabuchi, Hideo et al. (2012) Single Molecule Analysis Research Tool (SMART): an integrated approach for analyzing single molecule data. PLoS One 7:e30024
Greenfeld, Max; Solomatin, Sergey V; Herschlag, Daniel (2011) Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. J Biol Chem 286:19872-9

Showing the most recent 10 out of 25 publications