This Predoctoral Training Program is designed to provide a broad education in the Pharmacological Sciences leading to the Ph.D. degree. The Pharmacological Sciences Training Program (PSTP) is based primarily in the Department of Pharmacology and Chemical Biology at the University Of Pittsburgh School Of Medicine, but includes faculty from three schools within the University and ten departments including Anesthesiology, Chemistry, Immunology, Medicine, Microbiology and Molecular Genetics, Neurobiology, Neurology, Otolaryngology, Pharmaceutical Sciences, and Structural Biology. Graduate students entering this program are typically first recruited into the Interdisciplinary Biomedical Sciences Graduate Program where they join a program that includes core didactic education in biomedical sciences, scientific ethics and statistics and research rotations. Students then transfer into the specialized Ph.D. program of their choice and become candidates for PSTP support in their second year. The training program provides graduate classes in the essential elements of modern pharmacology including neuropharmacology, cancer pharmacology, cardiovascular pharmacology, signal transduction and drug discovery and also the elements or quantitative pharmacokinetics, pharmacodynamics and drug metabolism. Students choose mentors from a well-funded faculty in one of six research areas: Cancer Pharmacology, Cell and Organ System Pharmacology, Drug Discovery, Neuropharmacology. Signal Transduction and Structural Pharmacology. Following completion of the comprehensive exam and a dissertation proposal, students are engaged full time in research in the third and subsequent years of this program. The PSTP also emphasizes training in the responsible conduct of research and provides training in skills (e.g. public presentations) that promote professional development. The PSTP thus provides a contemporary and exciting training opportunity for motivated students within a rich research environment and aims to generate Ph.D. graduates with a broad understanding of the discipline of pharmacology.

Public Health Relevance

Students that participate in this program will receive training in fundamental areas of pharmacology and physiology as well as participate in state of the art research that examines the mechanisms of action of many drugs that are either currently in use or being developed to treat a variety of human diseases. The knowledge gained by these trainees will directly impact human health as they seek to apply this knowledge as either basic researchers, clinicians, educators, business leaders or public policy advocates towards the development of safe and effective drugs.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Meijles, Daniel N; Sahoo, Sanghamitra; Al Ghouleh, Imad et al. (2017) The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1. Sci Signal 10:
Lorenz-Guertin, Joshua M; Wilcox, Madeleine R; Zhang, Ming et al. (2017) A versatile optical tool for studying synaptic GABAA receptor trafficking. J Cell Sci 130:3933-3945
Andersen, Courtney L; Sikora, Matthew J; Boisen, Michelle M et al. (2017) Active Estrogen Receptor-alpha Signaling in Ovarian Cancer Models and Clinical Specimens. Clin Cancer Res 23:3802-3812
Priedigkeit, Nolan; Watters, Rebecca J; Lucas, Peter C et al. (2017) Exome-capture RNA sequencing of decade-old breast cancers and matched decalcified bone metastases. JCI Insight 2:
Priedigkeit, Nolan; Hartmaier, Ryan J; Chen, Yijing et al. (2017) Intrinsic Subtype Switching and Acquired ERBB2/HER2 Amplifications and Mutations in Breast Cancer Brain Metastases. JAMA Oncol 3:666-671
Erdem, Cemal; Nagle, Alison M; Casa, Angelo J et al. (2016) Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways. Mol Cell Proteomics 15:3045-57
Treat, Anny Caceres; Wheeler, David S; Stolz, Donna B et al. (2016) The PDZ Protein Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) Regulates Planar Cell Polarity and Motile Cilia Organization. PLoS One 11:e0153144
Delgado, Evan; Boisen, Michelle M; Laskey, Robin et al. (2016) High expression of orphan nuclear receptor NR4A1 in a subset of ovarian tumors with worse outcome. Gynecol Oncol 141:348-356
Yochum, Zachary A; Socinski, Mark A; Burns, Timothy F (2016) Paradoxical functions of ZEB1 in EGFR-mutant lung cancer: tumor suppressor and driver of therapeutic resistance. J Thorac Dis 8:E1528-E1531
Roland, Bartholomew P; Zeccola, Alison M; Larsen, Samantha B et al. (2016) Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics. PLoS Genet 12:e1005941

Showing the most recent 10 out of 54 publications