Opportunities in the fields of genetics and molecular biology in academia, government, and in the private sector have increased with the explosion of genetic information and the potential to use this information for developing novel medical therapies and diagnostic procedures. Thus, there is a need to train geneticists and molecular biologists with fundamental and cutting edge skills and knowledge. With this in mind, the goal and philosophy of this training program is to provide the best training in a particular core area of genetics and molecular biology while at the same time providing broad-based training in the related disciplines of biochemistry, cell biology, statistics, and bioinformatics. Students whose aspirations best match this training philosophy will be selected for support by this training program. This training program draws its faculty and students from the interdepartmental graduate program in Genetics and Molecular Biology (GMB). The GMB program is highly interdisciplinary with 41 faculties coming from the ranks of 11 basic science and clinical departments. With 11-12 new students joining the program each year, 65 students will be in training in fall 2007. These students will have opportunities to perform genetics research in six core areas, including Human Genetics;Regulation of Gene Expression, Developmental Genetics and Differentiation;Cancer Genetics;Bioinformatics and Comparative Genomics;and Genome Structure, Replication, Recombination and Repair. A host of model genetic organisms are used in these areas. The program offers a comprehensive curriculum that provides a solid foundation in classical and modern molecular genetics. Students enter laboratories for thesis work following their rotations and engage in cutting edge scientific inquiry. Training in oral and written presentation and teaching is an integral part of the program. A career development series, exciting seminar series, student hosted speaker program, and annual scientific retreats round out the student experience.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008490-18
Application #
7845087
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Haynes, Susan R
Project Start
1993-07-01
Project End
2013-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
18
Fiscal Year
2010
Total Cost
$306,141
Indirect Cost
Name
Emory University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Christopher, Michael A; Kyle, Stephanie M; Katz, David J (2017) Neuroepigenetic mechanisms in disease. Epigenetics Chromatin 10:47
Christopher, Michael A; Myrick, Dexter A; Barwick, Benjamin G et al. (2017) LSD1 protects against hippocampal and cortical neurodegeneration. Nat Commun 8:805
Rodriguez, Juan D; Myrick, Dexter A; Falciatori, Ilaria et al. (2017) A Model for Epigenetic Inhibition via Transvection in the Mouse. Genetics 207:129-138
Guo, Muyao; Price, Madeline J; Patterson, Dillon G et al. (2017) EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. J Immunol :
Butler, Kameryn M; da Silva, Cristina; Shafir, Yuval et al. (2017) De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis. Epilepsy Res 129:17-25
Shaw, Kelly A; Mulle, Jennifer G; Epstein, Michael P et al. (2017) Gastrointestinal Health in Classic Galactosemia. JIMD Rep 33:27-32
Bell, Joshua S K; Kagey, Jacob D; Barwick, Benjamin G et al. (2016) Factors affecting the persistence of drug-induced reprogramming of the cancer methylome. Epigenetics 11:273-87
Daenzer, Jennifer M I; Jumbo-Lucioni, Patricia P; Hopson, Marquise L et al. (2016) Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation. Dis Model Mech 9:1375-1382
Scharer, Christopher D; Blalock, Emily L; Barwick, Benjamin G et al. (2016) ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naïve SLE B cells. Sci Rep 6:27030
Mariani, Laura E; Bijlsma, Maarten F; Ivanova, Anna I et al. (2016) Arl13b regulates Shh signaling from both inside and outside the cilium. Mol Biol Cell :

Showing the most recent 10 out of 121 publications