The current proposal seeks renewal of the NIGMS biotechnology training program in Biomolecular and Tissue Engineering (BTE) at Duke University. The objective of the biotechnology training program in BTE is to provide classroom, laboratory, and research predoctoral training in the design, manipulation, and quantitative characterization of biomolecules, cells and tissues. The training program in BTE involves 31 training faculty with 17 faculty from the Pratt School of Engineering (Biomedical Engineering, Civil &Environmental Engineering, Mechanical Engineering &Materials Science) and 14 faculty from non-engineering fields. Of the non-engineering BTE faculty, 5 are in the Trinity College of Arts &Sciences (Chemistry, Computer Science), and 9 in the Basic Medical Science (Cell Biology, Radiation Oncology, Surgery, Bioinformatics, Medicine, Ophthalmology, and Radiology) and Clinical Departments of the Duke University Medical Center (Obstetrics &Gynecology, Medicine, Pathology, Radiation Oncology, Radiology, Surgery). Over the 17 years of NIGMS support, a total of 68 students have received predoctoral traineeships in BTE: 42 trainees have received their doctorates, 18 are still in training, and 7 have left the program. The disciplinary breakdown of trainees is 47 in BME, 10 in ME&MS, 7 in Chemistry, and 1 each in Biochemical Engineering, Electrical Engineering, Cell Biology, Zoology, and Bioinformatics &Genome Technology. BTE predoctoral trainees are required to (1) perform research that is interdisciplinary in nature and is central to the development of medical biotechnology, (2) have at least two BTE faculty on their doctoral dissertation committee, (3) take one of three approved laboratory-based engineering courses in modern biotechnology, (4) take four engineering electives that provide breadth in BTE [trainees entering the program from non-engineering disciplines select two engineering electives], (5) take two advanced courses in the biomedical sciences relevant to BTE, (6) take two semesters of the interdisciplinary "BioE" seminar series for credit, (7) participate in a three-month industrial biotechnology internship, (8) present in th annual BTE poster session, and (9) undergo training in responsible conduct in research. The BTE training grant currently supports 9 fellows for two years commencing in either the first or second year of graduate study. We request that this level of support be maintained.

Public Health Relevance

The NIGMS predoctoral training program in Biomolecular and Tissue Engineering at Duke University provides trainees with classroom, laboratory and research training in the design, manipulation and quantitative characterization of biomolecules, cells and tissues with special emphasis on medical biotechnology.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Biomedical Engineering
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Brochu, Alice B W; Matthys, Oriane B; Craig, Stephen L et al. (2015) Extended fatigue life of a catalyst free self-healing acrylic bone cement using microencapsulated 2-octyl cyanoacrylate. J Biomed Mater Res B Appl Biomater 103:305-12
Levering, Vrad; Wang, Qiming; Shivapooja, Phanindhar et al. (2014) Soft robotic concepts in catheter design: an on-demand fouling-release urinary catheter. Adv Healthc Mater 3:1588-96
Novak, Matthew T; Yuan, Fan; Reichert, William M (2014) Macrophage embedded fibrin gels: an in vitro platform for assessing inflammation effects on implantable glucose sensors. Biomaterials 35:9563-72
Vallejo-Heligon, Suzana G; Klitzman, Bruce; Reichert, William M (2014) Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors. Acta Biomater 10:4629-38
Polstein, Lauren R; Gersbach, Charles A (2014) Light-inducible gene regulation with engineered zinc finger proteins. Methods Mol Biol 1148:89-107
Brochu, Alice B W; Evans, Gregory A; Reichert, William M (2014) Mechanical and cytotoxicity testing of acrylic bone cement embedded with microencapsulated 2-octyl cyanoacrylate. J Biomed Mater Res B Appl Biomater 102:181-9
Fernandez, Cristina E; Obi-onuoha, Izundu C; Wallace, Charles S et al. (2014) Late-outgrowth endothelial progenitors from patients with coronary artery disease: endothelialization of confluent stromal cell layers. Acta Biomater 10:893-900
Jeong, Claire G; Francisco, Aubrey T; Niu, Zhenbin et al. (2014) Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis. Acta Biomater 10:3421-30
Brown, Nga L; Rose, Michael B; Blueschke, Gert et al. (2014) Bioburden after Staphylococcus aureus inoculation in type 1 diabetic rats undergoing internal fixation. Plast Reconstr Surg 134:412e-419e
Francisco, Aubrey T; Hwang, Priscilla Y; Jeong, Claire G et al. (2014) Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomater 10:1102-11

Showing the most recent 10 out of 60 publications