The current proposal seeks renewal of the biotechnology training program in Biomolecular and Tissue Engineering (BTE) at Duke University. The objective of the biotechnology training program in BTE is to provide enhanced classroom, laboratory, and research predoctoral training in the design, manipulation, and quantitative characterization of biomolecules, cells and tissues. The BTE training program involves 38 faculty, including 21 engineering faculty and 17 faculty from chemistry and biomedical sciences. To date, a total of 93 students have been supported by interdisciplinary predoctoral traineeships in BTE. The BTE training experience is enriched by (1) performing research that is interdisciplinary in nature and is central to the development of medical biotechnology, (2) including at least two BTE faculty on their doctoral dissertation committee to specifically provide mentorship in the area of medical biotechnology, (3) enrolling in a laboratory- based engineering course in modern biotechnology, engineering electives that provide breadth in BTE, and two advanced courses in the basic biomedical sciences relevant to BTE, (4) participating in four semesters of the interdisciplinary bioengineering seminar series and related journal club for credit, (5) participating in a special seminar series on career choices in the biotechnology industry, (6) engaging in a three-month industrial biotechnology internship, (7) presenting in the annual BTE poster session, and (8) undergoing training in responsible conduct in research. The value of this enriched training program has been demonstrated through student productivity and diverse career outcomes in the biotechnology industry. Moreover, the impact of the training grant has exceeded far beyond the individual trainees through student enrollment in our BTE Certificate Program and the leveraging of institutional resources for training activities for the broader Duke community. Our training program has also increased diversity and the participation of underrepresented groups. In our renewal, we have improved the program and its relevance to the modern biotechnology industry by adding faculty in molecular engineering and biomedical sciences, particularly faculty with a history of translational research. We have also added programmatic activities to enhance student interactions with visiting faculty and outreach opportunities. In this proposal we request the extension of our program to continue to integrate engineering, science, and medicine at Duke and create a unique training environment for our students.

Public Health Relevance

The NIGMS predoctoral training program in Biomolecular and Tissue Engineering at Duke University provides trainees with enhanced classroom, laboratory and research training in the design, manipulation and quantitative characterization of biomolecules, cells and tissues with special emphasis on medical biotechnology.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Training and Workforce Development Subcommittee - D (TWD)
Program Officer
Brown, Patrick
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Biomedical Engineering
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Polstein, Lauren R; Juhas, Mark; Hanna, Gabi et al. (2017) An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis. ACS Synth Biol 6:2003-2013
Klann, Tyler S; Black, Joshua B; Chellappan, Malathi et al. (2017) CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 35:561-568
Hofmann, Christina L; O'Sullivan, Melanie C; Detappe, Alexandre et al. (2017) NIR-emissive PEG-b-TCL micelles for breast tumor imaging and minimally invasive pharmacokinetic analysis. Nanoscale 9:13465-13476
Liu, Fangjie; Chavez, Roger L; Patek, S N et al. (2017) Asymmetric drop coalescence launches fungal ballistospores with directionality. J R Soc Interface 14:
Lee, Jaewoo; Xu, Li; Gibson, Tyler M et al. (2016) Differential effects of toll-like receptor stimulation on mRNA-driven myogenic conversion of human and mouse fibroblasts. Biochem Biophys Res Commun 478:1484-90
Tang, Nicholas C; Chilkoti, Ashutosh (2016) Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. Nat Mater 15:419-24
Thakore, Pratiksha I; Black, Joshua B; Hilton, Isaac B et al. (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13:127-37
Black, Joshua B; Adler, Andrew F; Wang, Hong-Gang et al. (2016) Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell 19:406-14
Marusak, K E; Feng, Y; Eben, C F et al. (2016) Cadmium sulphide quantum dots with tunable electronic properties by bacterial precipitation. RSC Adv 6:76158-76166
McFadden, Emily J; Hargrove, Amanda E (2016) Biochemical Methods To Investigate lncRNA and the Influence of lncRNA:Protein Complexes on Chromatin. Biochemistry 55:1615-30

Showing the most recent 10 out of 84 publications