This postdoctoral fellowship program in clinical pharmacology provides training in basic and applied human pharmacology for those committed to careers integrating basic and translational research and patient care. The objective of this program is to provide training across the continuum spanning mechanistic, translational, and clinical investigation, with an emphasis on pharmacology and experimental therapeutics, to replenish the dwindling national supply of clinician-investigators. The majority of fellows'time is focused on independent, hypothesis-driven research. The breadth of clinical pharmacology is delivered using a curriculum built upon the institutional NIH K30 Training Program in Human Investigation, including courses in basic and clinical pharmacology, study design, statistics, epidemiology, and ethics, as well as conferences including journal club, ethics, and research seminars. Experiential rotations include the editorial board of the Annals of Internal Medicine, pharmaceutical drug development at Merck Research Laboratories, and human clinical trials in the Jefferson Clinical Research Unit. Trainees customize their education by choosing a range of electives congruent with their career aspirations. These include Institutional Review Board membership, adult PK/PD modeling at Merck, pediatric pharmacometrics at Children's Hospital of Philadelphia, or rotations at the Food and Drug Administration (FDA). Research opportunities are offered by 39 preceptors, representing 10 departments and 3 divisions within the Department of Medicine. These preceptors represent a broad spectrum of disciplines, approaches, and methodologies to ensure a wide selection of training opportunities. Preceptors are selected on the basis of their productive research programs in basic or translational pharmacology funded through extramural mechanisms, success in training competitive investigators, and commitment and ability to train postdoctoral fellows. Programs of these preceptors constitute 13 general areas that span drug discovery, development, utilization, and regulation. Trainees selected from candidates with M.D., Ph.D., or Pharm.D. degrees in areas related to discipline-specific objectives, spend a minimum of 2 years developing core expertise in clinical pharmacology. The program has an established track record of recruiting and retaining highly qualified, diverse trainees who have been uniformly successful in obtaining, and advancing in, academic appointments in clinical pharmacology, leadership positions in the pharmaceutical industry, and regulatory and policy positions as scientists at the FDA.

Public Health Relevance

Advances in the new biology are transforming drug therapy, the most cost-effective component of healthcare. Yet, at this time of scientific opportunity, shortages in specialized workforces limit the discovery and development of drugs and their safe use. To fill that gap, the Jefferson Clinical Pharmacology Fellowship Program is training clinician scientists to translate new discoveries into drugs that revolutionize patient care.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008562-19
Application #
8500325
Study Section
Special Emphasis Panel (ZGM1-BRT-5 (PD))
Program Officer
Okita, Richard T
Project Start
1995-07-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
19
Fiscal Year
2013
Total Cost
$288,130
Indirect Cost
$20,010
Name
Thomas Jefferson University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Zane, Nicole R; Reedy, Michael D; Gastonguay, Marc R et al. (2017) A Population Pharmacokinetic Analysis to Study the Effect of Therapeutic Hypothermia on Vancomycin Disposition in Children Resuscitated From Cardiac Arrest. Pediatr Crit Care Med 18:e290-e297
Tran, Benjamin Duy; Moorthy, Ganesh S; Zuppa, Athena F (2017) Ketamine and norketamine stability in whole blood at ambient and 4°C conditions. Biomed Chromatogr :
Weinberg, David S; Lin, Jieru E; Foster, Nathan R et al. (2017) Bioactivity of Oral Linaclotide in Human Colorectum for Cancer Chemoprevention. Cancer Prev Res (Phila) 10:345-354
Healy, Jason R; Bezawada, Padmavani; Griggs, Nicholas W et al. (2017) Benzylideneoxymorphone: A new lead for development of bifunctional mu/delta opioid receptor ligands. Bioorg Med Chem Lett 27:666-669
Avant, Debbie; Baer, Gerri; Moore, Jason et al. (2017) Neonatal Safety Information Reported to the FDA During Drug Development Studies. Ther Innov Regul Sci 2017:1-9
Li, Peng; Wuthrick, Evan; Rappaport, Jeff A et al. (2017) GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome. Cancer Res 77:5095-5106
Li, Peng; Lin, Jieru E; Snook, Adam E et al. (2017) ST-Producing E. coli Oppose Carcinogen-Induced Colorectal Tumorigenesis in Mice. Toxins (Basel) 9:
Blanco, Fernando F; Preet, Ranjan; Aguado, Andrea et al. (2016) Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis. Oncotarget 7:74043-74058
Kim, G W; Lin, J E; Snook, A E et al. (2016) Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity. Nutr Diabetes 6:e211
Mari, Elisabeth R; Rasouli, Javad; Ciric, Bogoljub et al. (2016) Galectin-1 is essential for the induction of MOG35-55 -based intravenous tolerance in experimental autoimmune encephalomyelitis. Eur J Immunol 46:1783-96

Showing the most recent 10 out of 73 publications