The University of North Carolina Molecular and Cellular Biophysics Training Program (PMCB) is an interdisciplinary graduate training program with three essential aims: 1. to attract talented post-graduate students to apply the methods and concepts of the quantitative and mathematical sciences to problems in biology. 2. to provide a flexible vehicle for training this diverse group of graduate students who share with our biophysics faculty a commitment to developing molecular level descriptions of complex biological systems and processes. 3. to foster interactions and enhance the training and research environment within this diverse group of faculty and students. The PMCB continues to excel in meeting all three Aims, and most recently has expanded its focus to establish with the Biophysical Society a Summer Course in Biophysics designed to attract talented minority undergraduate students to the field as well. Significant changes in the organization of science graduate programs at UNC have necessitated changes in our Program as well and have led to plans for a PhD degree program in biophysics at UNC. This application is for continued funding of our successful training efforts and in support our efforts to move forward in these new areas.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008570-20
Application #
8699782
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Flicker, Paula F
Project Start
1995-07-01
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
20
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Hayne, Cassandra K; Yumerefendi, Hayretin; Cao, Lin et al. (2018) We FRET so You Don't Have To: New Models of the Lipoprotein Lipase Dimer. Biochemistry 57:241-254
Guseman, Alex J; Perez Goncalves, Gerardo M; Speer, Shannon L et al. (2018) Protein shape modulates crowding effects. Proc Natl Acad Sci U S A 115:10965-10970
Kudlacek, Stephan T; Premkumar, Lakshmanane; Metz, Stefan W et al. (2018) Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins. J Biol Chem 293:8922-8933
Studer, Sabine; Hansen, Douglas A; Pianowski, Zbigniew L et al. (2018) Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 362:1285-1288
Pablo, Michael; Ramirez, Samuel A; Elston, Timothy C (2018) Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation. PLoS Comput Biol 14:e1006016
Guffy, Sharon L; Teets, Frank D; Langlois, Minnie I et al. (2018) Protocols for Requirement-Driven Protein Design in the Rosetta Modeling Program. J Chem Inf Model 58:895-901
Adikes, Rebecca C; Hallett, Ryan A; Saway, Brian F et al. (2018) Control of microtubule dynamics using an optogenetic microtubule plus end-F-actin cross-linker. J Cell Biol 217:779-793
Haase, Karen P; Fox, Jaime C; Byrnes, Amy E et al. (2018) Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle. Mol Biol Cell 29:285-294
Kirkpatrick, Christine L; Parsley, Nicole C; Bartges, Tessa E et al. (2018) Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis. J Am Soc Mass Spectrom 29:859-865
Jiang, Yuhang; Fay, James M; Poon, Chi-Duen et al. (2018) Nanoformulation of Brain-Derived Neurotrophic Factor with Target Receptor-Triggered-Release in the Central Nervous System. Adv Funct Mater 28:

Showing the most recent 10 out of 96 publications