Modern drug discovery and development require the training of scientists who understand the molecular, physiological and quantitative basis of drug action and specificity, and who can apply modern technologies and concepts to the development of novel therapeutic strategies. This multidisciplinary doctoral training program in the Pharmacological Sciences is designed to help meet that demand by preparing students for biomedical research careers in schools of medicine, dentistry and pharmacy, in research institutes, and in governmental or industrial laboratories. The most important component of training is laboratory research, first as a series of research rotations, then in the dissertation laboratory. This training is complemented by a core course that integrates the theoretical and experimental foundations of modern biological sciences;core courses in pharmacology that emphasize quantitative analysis of drug action, pharmacokinetics, drug disposition, biostatistics and experimental design;advanced courses in specialty areas;seminar courses and journal clubs. Emphasis throughout is placed on development and refinement of communication and analytical skills. The 48 training faculty represent 17 basic science and clinical departments at Emory providing a wealth of diverse research training opportunities. Research foci in the program include Neurological Diseases and Therapy, Cancer Pharmacology, Cardiovascular Pharmacology, Chemical Biology and Drug Discovery and Novel Therapeutic Modalities. Cell Signaling, Systems and Integrative Pharmacology, and Toxicology are crosscutting themes. This Program currently supports six students each year, who are selected mainly from a pool of approximately 20-30 eligible students in the first three years of the Molecular and Systems Pharmacology (MSP) Program. Six slots are requested in this renewal. Graduates will have acquired broad familiarity with pharmacology, knowledge in depth in the area of dissertation research, and the technical, communicative and analytical skills necessary to pursue an independent research career. Students graduate an average of 5.9 years after matriculation. The research conducted by the trainees in this program will advance our knowledge of disease processes and contribute to development of novel and improved therapeutic strategies that will benefit the health of our citizens. By preparing young scientists to contribute to and lead the nation's efforts in these areas, this training program will help to ensure that our ability to imprve the nation's health remains strong in the future.

Public Health Relevance

This application requests funds to support the training of 6 graduate students per year in an interdisciplinary Pharmacological sciences graduate program. Forty-eight training faculty from 17 departments provide a wealth of diverse research training opportunities for students. The goal is to produce broadly trained scientists who will contribute t the discovery and development of novel therapeutic agents that will improve healthcare in the United States and worldwide.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM008602-16
Application #
8268011
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
1996-07-01
Project End
2017-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
16
Fiscal Year
2012
Total Cost
$267,927
Indirect Cost
$12,735
Name
Emory University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Ogden, Kevin K; Chen, Wenjuan; Swanger, Sharon A et al. (2017) Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. PLoS Genet 13:e1006536
Shapiro, Lauren P; Omar, Mitchell H; Koleske, Anthony J et al. (2017) Corticosteroid-induced dendrite loss and behavioral deficiencies can be blocked by activation of Abl2/Arg kinase. Mol Cell Neurosci 85:226-234
Elf, S; Lin, R; Xia, S et al. (2017) Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin. Oncogene 36:254-262
Kishore, Ayush; Hall, Randy A (2017) Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling. J Biol Chem 292:9711-9720
Mlcochova, Petra; Sutherland, Katherine A; Watters, Sarah A et al. (2017) A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages. EMBO J 36:604-616
Zakas, Philip M; Brown, Harrison C; Knight, Kristopher et al. (2017) Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol 35:35-37
Mays, Suzanne G; Okafor, C Denise; Tuntland, Micheal L et al. (2017) Structure and Dynamics of the Liver Receptor Homolog 1-PGC1? Complex. Mol Pharmacol 92:1-11
Stauffer, B B; Cui, G; Cottrill, K A et al. (2017) Bacterial Sphingomyelinase is a State-Dependent Inhibitor of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Sci Rep 7:2931
Shapiro, Lauren P; Parsons, Ryan G; Koleske, Anthony J et al. (2017) Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res 95:1123-1143
Giddens, Michelle M; Wong, Jennifer C; Schroeder, Jason P et al. (2017) GPR37L1 modulates seizure susceptibility: Evidence from mouse studies and analyses of a human GPR37L1 variant. Neurobiol Dis 106:181-190

Showing the most recent 10 out of 142 publications