The goals of the proposed training program are to recruit and train outstanding graduate students and to prepare them for productive careers in science. The trainers in the """"""""Molecular and Cellular Biology at Dartmouth"""""""" Training Program (MCBD) include 53 of the 69 faculty in Dartmouth's largest life science graduate program, the Molecular and Cellular Biology (MCB) Graduate Program. The MCB Graduate Program is an interdepartmental, interdisciplinary program with 137 students. Research areas include biotechnology, cell biology, computational biology, developmental biology, immunology, molecular pathogenesis, neurobiology, regulation of gene expression, signal transduction and cellular metabolism, and structural biology. MCB Graduate Program students and faculty come from nine departments at Dartmouth College, Dartmouth Medical School, and the Thayer School of Engineering. Many faculty in the MCB Graduate Program have long and established training records. The MCBD Training Program faculty was selected based on the strength of their research programs, their commitment to training predoctoral students, and their willingness to participate in the various activities of the MCB Graduate Program. Trainees must satisfy the MCB Graduate Program requirements for the Ph.D., which include three research rotations, a three-term core course, three elective courses, one term of teaching, participation in journal clubs and seminars, training in the responsible conduct of research, a qualifying exam, a yearly Research in Progress presentation, and a thesis defense. The MCB Graduate Program regularly matriculates approximately 25-30 students per year. New efforts to recruit underrepresented minority (URM) students, that include a highly successful Department of Defense-funded Summer Undergraduate Research Program (SURF), were implemented during the current funding period. As a result of these efforts the number of URM students in the MCB Graduate Program increased from one to four, and will further double upon matriculation of the Fall 2007 class. Training the next generation of scientists is essential for maintaining and improving the economy of our country and the health of its citizens. Funds from this program will be used to support young scientists during their training, and to help prepare the next generation of scientists and teachers for productive careers.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dartmouth College
Schools of Medicine
United States
Zip Code
Baker, Amy E; Diepold, Andreas; Kuchma, Sherry L et al. (2016) PilZ Domain Protein FlgZ Mediates Cyclic Di-GMP-Dependent Swarming Motility Control in Pseudomonas aeruginosa. J Bacteriol 198:1837-46
Mehta, Shalin B; McQuilken, Molly; La Riviere, Patrick J et al. (2016) Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc Natl Acad Sci U S A 113:E6352-E6361
Kowalski, Caitlin H; Beattie, Sarah R; Fuller, Kevin K et al. (2016) Heterogeneity among Isolates Reveals that Fitness in Low Oxygen Correlates with Aspergillus fumigatus Virulence. MBio 7:
Varn, Frederick S; Andrews, Erik H; Mullins, David W et al. (2016) Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles. Nat Commun 7:10248
Varn, Frederick S; Mullins, David W; Arias-Pulido, Hugo et al. (2016) Adaptive immunity programmes in breast cancer. Immunology :
Ries, Laure N A; Beattie, Sarah R; Espeso, Eduardo A et al. (2016) Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans. Genetics 203:335-52
Bridges, Andrew A; Jentzsch, Maximilian S; Oakes, Patrick W et al. (2016) Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J Cell Biol 213:23-32
Pattison, Jillian M; Posternak, Valeriya; Cole, Michael D (2016) Transcription Factor KLF5 Binds a Cyclin E1 Polymorphic Intronic Enhancer to Confer Increased Bladder Cancer Risk. Mol Cancer Res 14:1078-1086
Kitamura, Seiya; Hvorecny, Kelli L; Niu, Jun et al. (2016) Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa. J Med Chem 59:4790-9
Ung, Matthew H; Wang, George L; Varn, Frederick S et al. (2016) Application of pharmacologically induced transcriptomic profiles to interrogate PI3K-Akt-mTOR pathway activity associated with cancer patient prognosis. Oncotarget :

Showing the most recent 10 out of 155 publications