Training in molecular biotechnology is essential for an expanding list of disciplines that have found modern biology-based skills of critical importance in pursuing research goals in areas ranging from biochemistry to chemical engineering to plant biology. Recognizing this, NC State University has created a core education facility that serves campus-wide needs for graduate students requiring laboratory-based training in aspects of modern biology. This not only facilitates completion of the students'dissertation research, but also lays the basis for career opportunities in academic, government and industrial research settings. Using this campus educational resource as a framework, NC State University proposes to continue a graduate level training program in molecular biotechnology that will involve students from at least 4 colleges and 10 university departments. Ten trainee slots are requested for the next training period, which will be augmented by 4 slots funded from university resources. The program requirements include completing: (1) a graduate level, laboratory minor in molecular biotechnology;(2) an off-campus industrial internship;(3) a capstone biotechnology design course;(4) a course in professional development;(5) a course in research ethics;(6) an annual research symposium;and, (7) a biotechnology-related service project. These requirements are in addition to those associated with the student's particular department or program for the doctoral degree. This program will also provide a central focus for faculty of the various disciplines involved in this training effort to seek out new opportunities for formal and informal research collaboration.

Public Health Relevance

Advanced training in molecular biotechnology is critical to modern medical science research and should be a key component of pre-doctoral education for students aspiring to academic, industrial, and government research setting.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008776-15
Application #
8686865
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gerratana, Barbara
Project Start
2000-07-01
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
15
Fiscal Year
2014
Total Cost
Indirect Cost
Name
North Carolina State University Raleigh
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
City
Raleigh
State
NC
Country
United States
Zip Code
27695
Tokarz, Debra A; Heffelfinger, Amy K; Jima, Dereje D et al. (2017) Disruption of Trim9 function abrogates macrophage motility in vivo. J Leukoc Biol 102:1371-1380
Khatibi, Piyum A; Chou, Chung-Jung; Loder, Andrew J et al. (2017) Impact of growth mode, phase, and rate on the metabolic state of the extremely thermophilic archaeon Pyrococcus furiosus. Biotechnol Bioeng 114:2947-2954
Mukherjee, Arpan; Wheaton, Garrett H; Counts, James A et al. (2017) VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae. Environ Microbiol 19:2831-2842
Hecht, Elizabeth S; Loziuk, Philip L; Muddiman, David C (2017) Xylose Migration During Tandem Mass Spectrometry of N-Linked Glycans. J Am Soc Mass Spectrom 28:729-732
Pickett, Melissa A; Dush, Michael K; Nascone-Yoder, Nanette M (2017) Acetylcholinesterase plays a non-neuronal, non-esterase role in organogenesis. Development 144:2764-2770
Schulte, Mark J; Solocinski, Jason; Wang, Mian et al. (2017) A technique for lyopreservation of Clostridium ljungdahlii in a biocomposite matrix for CO absorption. PLoS One 12:e0180806
Zurawski, Jeffrey V; Khatibi, Piyum A; Akinosho, Hannah O et al. (2017) Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol 83:
Counts, James A; Zeldes, Benjamin M; Lee, Laura L et al. (2017) Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. Wiley Interdiscip Rev Syst Biol Med 9:
Leenay, Ryan T; Beisel, Chase L (2017) Deciphering, Communicating, and Engineering the CRISPR PAM. J Mol Biol 429:177-191
Loziuk, Philip L; Hecht, Elizabeth S; Muddiman, David C (2017) N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa. Anal Bioanal Chem 409:487-497

Showing the most recent 10 out of 65 publications