This training grant proposal is entitled "The cellular and molecular foundations of biomedical sciences". It is a renewal of a successful program started six years ago and seeks to train graduate students in the broad fundamentals of biomedical sciences to provide them with the tools to understand important problems in modern biology and health. This is accomplished initially through a two semester Core course covering Genetics, Genomics and Bioinformatics, Eukaryotic molecular biology, Molecular biophysics, Protein structure and function, and Cell biology. Students follow this with electives in specific fields of their interest. This interdepartmental program is based in the Department of Biological Sciences, but has been expanded to include established faculty from Columbia's College of Physicians and Surgeons. Students undertake rotations in up to three laboratories and can do their thesis work in any of the 47 faculty in the program, roughly half of which are on the Medical School campus. This has provided expanded opportunities for training of the students in outstanding laboratories and has fostered collaboration between faculty and students at Columbia's Medical School and main campuses. The faculty members work in a broad range of fields including structural biology, molecular biology, genetics, bioinformatics and systems biology, developmental biology and neurobiology. Experimental systems are also broad including bacteria, yeast, drosophila, C. elegans, frogs and mice. Human tissue culture systems are also utilized and most systems consider problems relevant to human health and physiology. Twelve graduate student traineeships are requested per year to support six students for two years each, usually in their third and fourth years. This will fund 19% of our current training grant eligible student pool of 63. The best students in our program will be chosen to be funded by this grant. This will be determined by their performance in the Core and other courses, recommendations from their rotation and thesis sponsors, and a short research proposal reviewed by the grant's steering committee. The qualifications of the faculty and the research facilities at Columbia are outstanding and provides a superb training environment for the students.

Public Health Relevance

The training of the next generation of biomedical scientists is essential to continued excellence of research in the U.S. and advances in understanding, controlling and curing human disease. Laboratories in the program address specific basic problems in biomedical sciences, many with direct applications to human disease.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Other Domestic Higher Education
New York
United States
Zip Code
Lasso, Gorka; Yu, Linda P C; Gil, David et al. (2014) Functional conformations for pyruvate carboxylase during catalysis explored by cryoelectron microscopy. Structure 22:911-22
Jurado, Ashley R; Tan, Dazhi; Jiao, Xinfu et al. (2014) Structure and function of pre-mRNA 5'-end capping quality control and 3'-end processing. Biochemistry 53:1882-98
Denny, Christine A; Kheirbek, Mazen A; Alba, Eva L et al. (2014) Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83:189-201
Kallgren, Scott P; Andrews, Stuart; Tadeo, Xavier et al. (2014) The proper splicing of RNAi factors is critical for pericentric heterochromatin assembly in fission yeast. PLoS Genet 10:e1004334
Kupferman, Justine V; Basu, Jayeeta; Russo, Marco J et al. (2014) Reelin signaling specifies the molecular identity of the pyramidal neuron distal dendritic compartment. Cell 158:1335-47
Tadeo, Xavier; Wang, Jiyong; Kallgren, Scott P et al. (2013) Elimination of shelterin components bypasses RNAi for pericentric heterochromatin assembly. Genes Dev 27:2489-99
Hou, Haitong; Kallgren, Scott P; Jia, Songtao (2013) Csi1 illuminates the mechanism and function of Rabl configuration. Nucleus 4:176-81
Yu, Linda P C; Chou, Chi-Yuan; Choi, Philip H et al. (2013) Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis. Biochemistry 52:488-96
Kung, Leslie F; Pagant, Silvere; Futai, Eugene et al. (2012) Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J 31:1014-27
Paulson, Ashley R; Tong, Liang (2012) Crystal structure of the Rna14-Rna15 complex. RNA 18:1154-62

Showing the most recent 10 out of 26 publications