This is a revised application for competitive renewal of the Molecular Therapeutics Training Program (MTTP) at Case Western Reserve University (CWRU). The application requests support for three predoctoral students in the first year of the grant, and six students in subsequent years, with a total funding period of five years. The global objective of the MTTP is to provide predoctoral students with the necessary knowledge base and research skills to begin independent investigative and teaching careers, thus increasing the supply of pharmacology-based skilled scientists and educators who will pursue independent careers in academia as well as research-based industry. The program itself is designed with a three-tiered progression. First, a didactic foundation in cell and molecular biology is established along with three meaningful research rotations to facilitate mentor selection. Secondly a foundation in physiology and pharmacology is achieved via an intensive two-part core course. Thirdly, students acquire advanced understanding in their area of specialization via advanced courses and thesis research. To facilitate this advanced stage, the training faculty and advanced courses are organized according to four tracks, namely Molecular Pharmacology &Cell Regulation, Membrane Biology &Pharmacology, Cancer Therapeutics, and Translational Therapeutics. This multifaceted, approach provides students with a strong foundation in fundamental pharmacology and the associated sciences, coupled with individualized advanced training in modern pharmacology. The interdisciplinary design of the program fosters productive interactions among students and faculty in basic and clinical departments throughout the School of Medicine, around the common theme of therapeutics. The priority outcome of the program is to develop students with the scientific maturity to address new research questions through hypothesis-driven experimental designs. The Program is focused and administered in the Department of Pharmacology, and it benefits from strong interdisciplinary interactions among basic science and clinical faculty as trainers in the advanced tracks. Eleven primary faculty of Pharmacology collaborate with 27 faculty members from other primary disciplines to provide a rich diversity of research expertise concentrated on a common theme of innovative training in therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008803-09
Application #
8098059
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
2001-07-01
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
9
Fiscal Year
2011
Total Cost
$214,715
Indirect Cost
Name
Case Western Reserve University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Gorelenkova Miller, Olga; Cole, Kyle S; Emerson, Corey C et al. (2017) Novel chloroacetamido compound CWR-J02 is an anti-inflammatory glutaredoxin-1 inhibitor. PLoS One 12:e0187991
Sahni, Jennifer M; Gayle, Sylvia S; Webb, Bryan M et al. (2017) Mitotic Vulnerability in Triple-Negative Breast Cancer Associated with LIN9 Is Targetable with BET Inhibitors. Cancer Res 77:5395-5408
Gulati, Neetu M; Pitek, Andrzej S; Steinmetz, Nicole F et al. (2017) Cryo-electron tomography investigation of serum albumin-camouflaged tobacco mosaic virus nanoparticles. Nanoscale 9:3408-3415
Francy, Christopher A; Clinton, Ryan W; Fröhlich, Chris et al. (2017) Cryo-EM Studies of Drp1 Reveal Cardiolipin Interactions that Activate the Helical Oligomer. Sci Rep 7:10744
Clinton, Ryan W; Francy, Christopher A; Ramachandran, Rajesh et al. (2016) Dynamin-related Protein 1 Oligomerization in Solution Impairs Functional Interactions with Membrane-anchored Mitochondrial Fission Factor. J Biol Chem 291:478-92
Macdonald, Patrick J; Francy, Christopher A; Stepanyants, Natalia et al. (2016) Distinct Splice Variants of Dynamin-related Protein 1 Differentially Utilize Mitochondrial Fission Factor as an Effector of Cooperative GTPase Activity. J Biol Chem 291:493-507
Sahni, Jennifer M; Gayle, Sylvia S; Bonk, Kristen L Weber et al. (2016) Bromodomain and Extraterminal Protein Inhibition Blocks Growth of Triple-negative Breast Cancers through the Suppression of Aurora Kinases. J Biol Chem 291:23756-23768
Johnson, William M; Golczak, Marcin; Choe, Kyonghwan et al. (2016) Regulation of DJ-1 by Glutaredoxin 1 in Vivo: Implications for Parkinson's Disease. Biochemistry 55:4519-32
Stepanyants, Natalia; Macdonald, Patrick J; Francy, Christopher A et al. (2015) Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol Biol Cell 26:3104-16
Francy, Christopher A; Alvarez, Frances J D; Zhou, Louie et al. (2015) The mechanoenzymatic core of dynamin-related protein 1 comprises the minimal machinery required for membrane constriction. J Biol Chem 290:11692-703

Showing the most recent 10 out of 48 publications