The Integrated Training in Pharmacological Sciences program at Mount Sinai aims to provide rigorous interdisciplinary pre-doctoral training in the fundamental mechanisms that control physiological and pathophysiological processes and drug action. It is the goal of this program to provide educational activities and research training that connect the basic mechanistic findings to therapeutic modalities including the identification of drug targets and development of lead therapeutic compounds. The training program seeksto achieve in-depth training coupled with a broad perspective that equips the trainees to incorporate emerging new areas throughout their careers. The program also seeks to create a learning environment that promotes independent thinking and individual analytical skills, while fostering the ability to work in collaborative learning and research environments. The program combines a core of integrated didactic training in Pharmacology and Systems Biology that provides grounding in core principles of biochemistry, structural biology, genetics, cellular and molecular biology within a context of physiology and disease pathophysiology. Computational and modeling approaches to systems problems at various scales, to large data sets and to epidemiological problems are introduced throughout, together with support that enables students with different entering levels of quantitative skills to succeed. This curriculum uses an integrated active learning approach in both basic and advanced courses that is enhanced by specific pedagogical innovations. They include asynchronous discussions as well as in-class discussions and use of peer evaluation methodologies that prepare students for this major feature of their future careers. The 49 participating faculty of this training program are drawn from 13 academic departments and institutes that include a mix of clinical and basic science emphases. Their research projects provide opportunities for program trainees to tackle important problems in diverse areas of biomedicine that have strong pharmacological and/or systems biology interfaces and translational potential. The interdisciplinary and translational training environment and the structure of the program foster the entry of our trainees into independent scientific careers.

Public Health Relevance

Breakthroughs that yield new drugs that ameliorate different human diseases, that yield new diagnostics or new therapeutic strategies depend more and more upon researchers who apply quantitativecomputational methods to the complex biology of disease and drug interactions.
We aim to foster these skills in talented PhD and MD/PhD students, enabling them to achieve the next generation of breakthroughs.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
Schools of Medicine
New York
United States
Zip Code
Long, Rose G; Torre, Olivia M; Hom, Warren W et al. (2016) Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements, and Material Properties of the Intervertebral Disk and a Summary of Candidate Hydrogels for Repair. J Biomech Eng 138:021007
Want, Andrew; Gillespie, Stephanie R; Wang, Zheng et al. (2016) Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients. PLoS One 11:e0157404
Smith, Steven G; Zhou, Ming-Ming (2016) The Bromodomain: A New Target in Emerging Epigenetic Medicine. ACS Chem Biol 11:598-608
Zhang, Jinglan; Lachance, Véronik; Schaffner, Adam et al. (2016) A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects. PLoS Genet 12:e1005848
Guaitoli, Giambattista; Raimondi, Francesco; Gilsbach, Bernd K et al. (2016) Structural model of the dimeric Parkinson's protein LRRK2 reveals a compact architecture involving distant interdomain contacts. Proc Natl Acad Sci U S A 113:E4357-66
Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn et al. (2016) Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility. J Physiol :
Meslamani, Jamel; Smith, Steven G; Sanchez, Roberto et al. (2016) Structural features and inhibitors of bromodomains. Drug Discov Today Technol 19:3-15
Devenyi, Ryan A; Sobie, Eric A (2016) There and back again: Iterating between population-based modeling and experiments reveals surprising regulation of calcium transients in rat cardiac myocytes. J Mol Cell Cardiol 96:38-48
Song, Roy S; Tolentino, Rosa; Sobie, Eric A et al. (2016) Cross-regulation of Phosphodiesterase 1 and Phosphodiesterase 2 Activities Controls Dopamine-mediated Striatal α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Trafficking. J Biol Chem 291:23257-23267
Mayourian, Joshua; Savizky, Ruben M; Sobie, Eric A et al. (2016) Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes. PLoS Comput Biol 12:e1005014

Showing the most recent 10 out of 81 publications