The goal of this Chemistry and Chemical Biology (CCB) predoctoral training program is to foster research that uses chemical strategies to understand and control fundamental biological processes. The program is distinctive in that its orientation is to study of molecules in living systems from a chemical perspective. The program provides a rich venue for chemical research as it interfaces with biology by bringing together 44 investigators and resources from seven departments at UCSF. The research has direct relevance to national priorities in human health and addresses central problems in chemical biology including, molecular recognition, protein folding, biomolecular structure prediction and determination, signal transduction, protein trafficking, computer aided drug and protein design, synthetic chemistry, high throughput screening, genomics, transcriptomics, proteomics, systems biology and quantitative approaches to measure cellular signaling. These studies use systems, ranging from bacteria to humans and encompass technologies including chemical synthesis, crystallography, NMR spectroscopy, mass spectrometry and computational modeling. Annually, approximately 9 students are enrolled annually from about 100 applicants after a rigorous application process that culminates in personal interviews. Under-represented minority students now represent 22 percent of students. Under-represented minority candidates are actively sought in an extensive series of programs including the Science Education Partnership and an undergraduate Summer Research Training Program. Program components include: 1) rigorous didactic courses;2) lab rotations in three different labs;3) oral presentation by students on each lab rotation;3) oral presentations of scientific information and hypotheses defense via tutorial training with faculty in a journal club setting;4) an intensive oral qualifying exam;5) individual thesis research and finally;6) a dissertation seminar. The student to faculty ratio in the program is approximately 1 to 1 and is supported by small faculty to class size ratios. A lively course on Ethical Conduct of Science is mandatory. An extremely vigorous and high-quality weekly seminar series in which recognized leaders in the field of chemical biology present their most recent research, supplement the training. Ample time is provided for interaction with the speakers in one-on-one meetings with interested students in an informal setting. Trainees also have a seminar series for presenting their research to CCB students and faculty. Our 44 faculty members are extremely dedicated to graduate training. This multidisciplinary research training is carried out within an intellectually integrated and well-equipped collection of member labs, and within a uniquely collaborative, interactive and communicative research environment. Expansion into the new Mission Bay campus has greatly strengthened the program by providing state of the art chemistry and chemical biology lab space.

Public Health Relevance

The UCSF Chemistry and Chemical (CCB) Training Program trains scientists to apply chemical approaches to biological problems. Graduates of this program earn doctoral degrees and become influential leaders in industrial and academic biomedical research and other fields. Such skilled scientists are needed to solve problems related to all areas of health and disease.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Pharmacy
San Francisco
United States
Zip Code
Cerchiari, Alec; Garbe, James C; Todhunter, Michael E et al. (2015) Formation of spatially and geometrically controlled three-dimensional tissues in soft gels by sacrificial micromolding. Tissue Eng Part C Methods 21:541-7
Schweicher, Julien; Nyitray, Crystal; Desai, Tejal A (2014) Membranes to achieve immunoprotection of transplanted islets. Front Biosci (Landmark Ed) 19:49-76
Gustafson, William Clay; Meyerowitz, Justin Gabriel; Nekritz, Erin A et al. (2014) Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26:414-27
Krishnan, Shyam; Miller, Rand M; Tian, Boxue et al. (2014) Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J Am Chem Soc 136:12624-30
Tajon, Cheryl; Jun, Young-Wook; Craik, Charles S (2014) Single-molecule sensing of caspase activation in live cells via plasmon coupling nanotechnology. Methods Enzymol 544:271-97
Weber, Robert J; Liang, Samantha I; Selden, Nicholas S et al. (2014) Efficient targeting of fatty-acid modified oligonucleotides to live cell membranes through stepwise assembly. Biomacromolecules 15:4621-6
Sos, Martin L; Levin, Rebecca S; Gordan, John D et al. (2014) Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. Cell Rep 8:1037-48
Deuker, Marian M; McMahon, Martin (2014) Cancer biology: Enzyme meets a surprise target. Nature 510:225-6
Holderfield, Matthew; Deuker, Marian M; McCormick, Frank et al. (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14:455-67
Nyitray, Crystal E; Chavez, Miquella G; Desai, Tejal A (2014) Compliant 3D microenvironment improves ?-cell cluster insulin expression through mechanosensing and ?-catenin signaling. Tissue Eng Part A 20:1888-95

Showing the most recent 10 out of 31 publications