This revised Training Program application will provide students with an exceptional opportunity for cross disciplinary education and research training in the component areas of marine biotechnology, including natural products chemistry, biochemistry, genomics, pharmacology, and medicine. Moreover, this training grant will provide collaborative cross-disciplinary research mentorship through training individual students in different laboratories in multiple departments on the UCSD campus as well as the Salk Institute and J. Craig Venter Institute. To accomplish this mission, the TP has the following objectives: (1) to provide new course offerings that create a unique curriculum on the UCSD campus that is the intellectual foundation for research in the multidisciplinary field of Marine Biotechnology (2) to provide a stimulating series of seminars by leaders in the field of Marine Biotechnology, and to develop skills in our trainees through special opportunities to arrange and host these visiting speakers (3) to provide Industrial Internships that broaden the educational base and technology perspective of our graduates (4) to provide opportunities to our trainees that develop their research presentation skills through an annual symposium, participation in various research and journal clubs, and participation at national and international conferences (5) to provide competitively awarded financial support to especially meritorious trainees for a 2-year period in recognition of their superior research efforts and talents. The rationale for this training program is the need to train students for the biotechnology industry as well as for academia with an integrated knowledge of marine systems and their unique chemical, biochemical, and genetic attributes. To our knowledge, this broad training platform is not offered at any other institution in the US, and thus our graduates are sought after to fill a unique need in industry and academia. The training is proposed for 6 predoctoral trainees in the first two years and 8 predoctoral trainees in the latter three years of the renewal period, supplemented by 2 or more university-supported trainees, to support students in their second and third year of their 5-year Ph.D. programs. The assembly of this faculty and research strength under the auspices of the TP in Marine Biotechnology is helping to create a unique, internationally recognized educational and research program at UCSD.

Public Health Relevance

Marine organisms are an exceptional source of natural products with useful medical properties. Fully accessing these natural products is enhanced by an integrated chemical and genetic approach, which is inherently complex and multidisciplinary. UCSD has a unique assembly of academic and research programs which can train the next generation of scientists in these areas.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Earth Sciences/Natur
La Jolla
United States
Zip Code
Roa, Jinae N; Munévar, Christian L; Tresguerres, Martin (2014) Feeding induces translocation of vacuolar proton ATPase and pendrin to the membrane of leopard shark (Triakis semifasciata) mitochondrion-rich gill cells. Comp Biochem Physiol A Mol Integr Physiol 174:29-37
Coates, R Cameron; Podell, Sheila; Korobeynikov, Anton et al. (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9:e85140
Hensler, Mary E; Jang, Kyoung Hwa; Thienphrapa, Wdee et al. (2014) Anthracimycin activity against contemporary methicillin-resistant Staphylococcus aureus. J Antibiot (Tokyo) 67:549-53
Agarwal, Vinayak; El Gamal, Abrahim A; Yamanaka, Kazuya et al. (2014) Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat Chem Biol 10:640-7
Gallagher, Kelley A; Rauscher, Kristin; Pavan Ioca, Laura et al. (2013) Phylogenetic and chemical diversity of a hybrid-isoprenoid-producing streptomycete lineage. Appl Environ Microbiol 79:6894-902
Haste, Nina M; Hughes, Chambers C; Tran, Dan N et al. (2011) Pharmacological properties of the marine natural product marinopyrrole A against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:3305-12
Haste, Nina M; Farnaes, Lauge; Perera, Varahenage R et al. (2011) Bactericidal kinetics of marine-derived napyradiomycins against contemporary methicillin-resistant Staphylococcus aureus. Mar Drugs 9:680-9
Esquenazi, Eduardo; Jones, Adam C; Byrum, Tara et al. (2011) Temporal dynamics of natural product biosynthesis in marine cyanobacteria. Proc Natl Acad Sci U S A 108:5226-31
Bernhardt, Peter; Okino, Tatsufumi; Winter, Jaclyn M et al. (2011) A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. J Am Chem Soc 133:4268-70
Gonzalez, David J; Haste, Nina M; Hollands, Andrew et al. (2011) Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 157:2485-92

Showing the most recent 10 out of 25 publications