Bioinformatics and computational biology are two related disciplines that have developed from the need to analyze and interpret large, complex datasets which have emerged in the last decade as genomics, proteomics, systems biology, and other high-throughput approaches have become more feasible. Bioinformatics and computational biology utilize techniques from applied mathematics, informatics, statistics, and computer science to solve biological problems. The Predoctoral Training Program in Bioinformatics and Computational Biology (BCB) was established at UNC-Chapel Hill in the Fall 2002 to address these needs. In 2007 the training program transitioned to the Ph.D. Curriculum in Bioinformatics and Computational Biology. The goal of the Ph.D. Curriculum is to train the next generation of scientists who can develop and apply quantitative/analytical tools to driving biological problems. The Ph.D. curriculum provides the necessary latitude to prepare students with the right balance of quantitative skills (e.g., mathematics, statistics, and computer science) and experimental approaches (e.g., genetics, cell biology, molecular biology) for making important contributions to modern biological research. There are currently 13 full professors, 8 associate professors, and 16 assistant professors among the 37 total BCB faculty. The Ph.D. curriculum consists of four key components: formal coursework, research rotations, Ph.D. research and a colloquium. The coursework is includes three tiers of training: foundational courses, core modules, and advanced courses. Eight specialized core modules have been developed that cover major areas of bioinformatics and computational biology, such as information theory, machine learning, sequence comparison, phylogeny, data management, ontology, data mining, biostatistics, biomolecular structure/function prediction, and modeling of complex systems. Funds are requested to support six predoctoral students per year. The requested funds will dovetail with the UNC investment in research infrastructure, faculty recruitment, and education in both genomics and bioinfonnatics and computational biology, leveraging intramural as well as extramural industrial support to expand this vital interdisciplinary training program.

Public Health Relevance

Interpreting the vast amount of data produced by high throughput biomedical technologies requires novel computational and mathematical approaches. The Curriculum in Bioinformatics and Computational Biology at the University of North Carolina at Chapel Hill provides the graduate training needed to develop and apply computational methods for solving driving complex biomedical problems.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Hagan, Ann A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Schools of Medicine
Chapel Hill
United States
Zip Code
Oreper, Daniel; Cai, Yanwei; Tarantino, Lisa M et al. (2017) Inbred Strain Variant Database (ISVdb): A Repository for Probabilistically Informed Sequence Differences Among the Collaborative Cross Strains and Their Founders. G3 (Bethesda) 7:1623-1630
Civelek, Mete; Wu, Ying; Pan, Calvin et al. (2017) Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. Am J Hum Genet 100:428-443
Woods, Chanin Tolson; Laederach, Alain (2017) Classification of RNA structure change by 'gazing' at experimental data. Bioinformatics 33:1647-1655
Kutchko, Katrina M; Laederach, Alain (2017) Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. Wiley Interdiscip Rev RNA 8:
Roman, Tamara S; Cannon, Maren E; Vadlamudi, Swarooparani et al. (2017) A Type 2 Diabetes-Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the ADCY5 Locus. Diabetes 66:2521-2530
Lakhani, Vinal; Elston, Timothy C (2017) Testing the limits of gradient sensing. PLoS Comput Biol 13:e1005386
Corley, Meredith; Solem, Amanda; Phillips, Gabriela et al. (2017) An RNA structure-mediated, posttranscriptional model of human ?-1-antitrypsin expression. Proc Natl Acad Sci U S A 114:E10244-E10253
Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A et al. (2017) Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle. Cell Syst 5:445-459.e5
Walsh, Dana M; McCullough, Shaun D; Yourstone, Scott et al. (2017) Alterations in airway microbiota in patients with PaO2/FiO2 ratio ? 300 after burn and inhalation injury. PLoS One 12:e0173848
Quach, Bryan; Furey, Terrence S (2017) DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter. Bioinformatics 33:956-963

Showing the most recent 10 out of 71 publications