In 2008, the School of Molecular Biosciences (SMB) at Washington State University moved from offering three PhD degrees (Biochemistry, Genetics and Cell Biology, and Microbiology) to a single interdisciplinary degree in Molecular Biosciences. Trainees, however, still choose one of three discipline-specific tracks (Biochemistry, Microbiology, or Genetics) to ensure that their interdisciplinary training in Molecular, Cellular, and Structural Biology builds on a solid, discipline-specific foundation. SMB graduate students train in the laboratories of 31 faculty with primary appointments in SMB or in the laboratories of Associate Faculty, who hold primary appointments in other departments and colleges at WSU (Sciences, Veterinary Medicine, Pharmacy, and Agriculture). All Associate Faculty have research expertise in one of the three founding disciplines and in one of four interdisciplinary areas: Molecular Basis of Reproduction, Chromatin and DNA Repair, Gene Regulation, and Infectious Disease. Distinctive features that complement and enhance our didactic and research programs include an annual retreat, weekly student seminars, weekly seminars by investigators from outside of WSU, an active student-run organization-the Molecular Biosciences Graduate Student Association, and a new Professional Development Track. Together, these unique training components promote the importance of a lifetime of scientific learning as well as emphasize the importance of interpersonal and professional communication and management skills. Since our graduate program has been following the guidelines of NIGMS training programs for the last several years, we feel it is now worthy of NIGMS T32 support. Specifically, Molecular Biosciences Training Program (MBTP) described in this application will provide the didactic and conceptual framework whereby all predoctoral students in SMB will obtain their PhD degrees at WSU. While all SMB graduate students will participate in the program only a subset of the trainees will be supported by NIH stipends. This will occur in the third year, where the most accomplished trainees will be awarded NIH-funded stipends. Thus, the NIH funded segment of our training program provides a means for highlighting and honoring outstanding performance.

Public Health Relevance

Our training program arms graduate students with the necessary skills and tools to identify and solve modern biological problems at cellular, molecular, and structural levels;deepens the ability of graduate students to communicate effectively both orally and in writing;instills and promotes a life-time of scientific learning;and encourages the highest levels of professionalism and humanism.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM083864-04
Application #
8496071
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$146,066
Indirect Cost
$8,490
Name
Washington State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
041485301
City
Pullman
State
WA
Country
United States
Zip Code
99164
Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma et al. (2016) Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation. Sci Rep 6:28132
Donaubauer, Elyse M; Law, Nathan C; Hunzicker-Dunn, Mary E (2016) Follicle-Stimulating Hormone (FSH)-dependent Regulation of Extracellular Regulated Kinase (ERK) Phosphorylation by the Mitogen-activated Protein (MAP) Kinase Phosphatase MKP3. J Biol Chem 291:19701-12
Law, Nathan C; Hunzicker-Dunn, Mary E (2016) Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation. J Biol Chem 291:4547-60
Herndon, Maria K; Law, Nathan C; Donaubauer, Elyse M et al. (2016) Forkhead box O member FOXO1 regulates the majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol Cell Endocrinol 434:116-26
Donaubauer, Elyse M; Hunzicker-Dunn, Mary E (2016) Extracellular Signal-regulated Kinase (ERK)-dependent Phosphorylation of Y-Box-binding Protein 1 (YB-1) Enhances Gene Expression in Granulosa Cells in Response to Follicle-stimulating Hormone (FSH). J Biol Chem 291:12145-60
Kent, Travis; Arnold, Samuel L; Fasnacht, Rachael et al. (2016) ALDH Enzyme Expression Is Independent of the Spermatogenic Cycle, and Their Inhibition Causes Misregulation of Murine Spermatogenic Processes. Biol Reprod 94:12
Hogarth, Cathryn A; Evans, Elizabeth; Onken, Jennifer et al. (2015) CYP26 Enzymes Are Necessary Within the Postnatal Seminiferous Epithelium for Normal Murine Spermatogenesis. Biol Reprod 93:19
Hogarth, Cathryn A; Arnold, Samuel; Kent, Travis et al. (2015) Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod 92:37
O'Loughlin, Jason L; Eucker, Tyson P; Chavez, Juan D et al. (2015) Analysis of the Campylobacter jejuni genome by SMRT DNA sequencing identifies restriction-modification motifs. PLoS One 10:e0118533
Vrooman, Lisa A; Oatley, Jon M; Griswold, Jodi E et al. (2015) Estrogenic exposure alters the spermatogonial stem cells in the developing testis, permanently reducing crossover levels in the adult. PLoS Genet 11:e1004949

Showing the most recent 10 out of 38 publications