The objective is to continue development of MIT's interdisciplinary predoctoral training program in Computational and Systems Biology (CSB), which trains students to become leaders in biomedical research at the interface of biology, computation and engineering. CSB is the primary training program at MIT for students interested in computational and systems biology and is the only program that emphasizes interdisciplinary training and research in the field. Program faculty are concentrated in the three founding departments - Biological Engineering (BE), Biology, and Electrical Engineering &Computer Science (EECS) - with additional involvement of faculty from other departments. Training faculty research interests span a wide range of CSB- related areas including computational molecular biology/regulatory genomics and evolution, molecular and cellular biophysics, systems biology of cancer and other diseases, proteomics, microbial ecology, bioimaging, protein design/engineering, synthetic biology, microfluidics/Bio-MEMS, and toxicogenomics. This proposal seeks to expand the pool of training faculty significantly, including 9 faculty newly hired in the past 5 years who have active research programs in the field. Students apply directly to the CSB Ph.D. program from their undergraduate or Master's institution and receive multi- and inter-disciplinary training in the field of computational and systems biology. The proposal seeks 12 slots to support 6 students for the first two years of the Ph.D., enabling extended research rotations and participation in special program activities. Unique aspects of the program include: (a) unusually diverse collection of research areas across science and engineering, with highly collaborative interdisciplinary faculty;(b) a unique core of recently developed, interdisciplinary classroom subjects that combine biology, engineering, statistics and computation;(c) intensive advising and multi- disciplinary thesis committees to optimize the training experience for students from diverse academic backgrounds;(d) an annual retreat with participation of students and faculty focusing on research, leadership, and challenges to interdisciplinary research.

Public Health Relevance

The proposed training program will enable training of a new type of researcher, with interdisciplinary expertise in concepts, approaches and technologies from biology, computer science, and engineering. This new cohort of investigators will be ideally positioned to assume leadership positions in biomedical research, which increasingly involves the application of sophisticated technologies and advanced modeling techniques to design and predict sites of intervention in complex gene networks to achieve desired therapeutic aims in diseases such as diabetes and cancer.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Program Officer
Marcus, Stephen
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Schools of Arts and Sciences
United States
Zip Code
Martinez, Fernando J; Pratt, Gabriel A; Van Nostrand, Eric L et al. (2016) Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System. Neuron 92:780-795
Knudsen, Scott M; Cermak, Nathan; Delgado, Francisco Feijó et al. (2016) Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores. J Bacteriol 198:168-77
Cordero, Otto X; Datta, Manoshi S (2016) Microbial interactions and community assembly at microscales. Curr Opin Microbiol 31:227-34
Fulco, Charles P; Munschauer, Mathias; Anyoha, Rockwell et al. (2016) Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354:769-773
Hnisz, Denes; Weintraub, Abraham S; Day, Daniel S et al. (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454-8
Zhao, Boyang; Sedlak, Joseph C; Srinivas, Raja et al. (2016) Exploiting Temporal Collateral Sensitivity in Tumor Clonal Evolution. Cell 165:234-46
Klosinska, Maja; Picard, Colette L; Gehring, Mary (2016) Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat Plants 2:16145
Conway, Anne E; Van Nostrand, Eric L; Pratt, Gabriel A et al. (2016) Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep 15:666-79
Datta, Manoshi S; Sliwerska, Elzbieta; Gore, Jeff et al. (2016) Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun 7:11965
Brito, I L; Yilmaz, S; Huang, K et al. (2016) Mobile genes in the human microbiome are structured from global to individual scales. Nature 535:435-9

Showing the most recent 10 out of 34 publications