The University of Chicago Growth, Development and Disabilities MD/PhD Training Program is designed to provide basic science and translational research training for a highly selective group of medical students in a combined-degree program. The Program is based on the premise that a commitment to complete both the MD and PhD degrees and to establish and maintain a research-focused career is only developed after some time in medical school (hence no attrition from this training program since 1978). Students are chosen on the basis of outstanding academic credentials, demonstrated ability in basic science, and devotion to pursuit of a research-oriented career. All students fulfill the requirements of a PhD in a particular discipline and complete the same requirements for the MD as other medical students. They are continuously and longitudinally advised by the Program Director and staff, a Student Advisory Committee, a newly-formed External Advisory Committee, and Mentors who have outstanding records of promoting the training, education and career advancement of biomedical scientists. The Program has undergone a restructuring to more closely align its training goals with the mission of NICHD to foster training in the areas of growth, development, and disabilities research and clinical specialties in pediatrics and related areas. The overall Program, its elements, and the participants are assessed via multiple evaluation tools through the year. The ultimate success is measured by the impact of the trainees'thesis research, the completion of both the MD and PhD degrees, and their long- term success as physician-scientists.

Public Health Relevance

The long-standing goal of the University of Chicago MD/PhD training program in Growth, Development and Disabilities is to train outstanding physician-scientists. Formal training is provided for each degree, supplemented with ample, dedicated mentoring and advising to assure the attainment of this goal. The participants'progress is followed throughout their time in the training program and their subsequent career trajectories.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Institutional National Research Service Award (T32)
Project #
2T32HD007009-39A1
Application #
8666414
Study Section
Special Emphasis Panel (ZHD1)
Program Officer
Parisi, Melissa
Project Start
1975-07-01
Project End
2019-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
39
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Chicago
Department
Pediatrics
Type
Schools of Medicine
DUNS #
City
Chicago
State
IL
Country
United States
Zip Code
60637
Miller, Michelle L; McIntosh, Christine M; Williams, Jason B et al. (2018) Distinct Graft-Specific TCR Avidity Profiles during Acute Rejection and Tolerance. Cell Rep 24:2112-2126
Kirkley, Andrew G; Carmean, Christopher M; Ruiz, Daniel et al. (2018) Arsenic exposure induces glucose intolerance and alters global energy metabolism. Am J Physiol Regul Integr Comp Physiol 314:R294-R303
Orsbon, Courtney P; Gidmark, Nicholas J; Ross, Callum F (2018) Dynamic Musculoskeletal Functional Morphology: Integrating diceCT and XROMM. Anat Rec (Hoboken) 301:378-406
Odenwald, Matthew A; Choi, Wangsun; Kuo, Wei-Ting et al. (2018) The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J Biol Chem 293:17317-17335
Odenwald, Matthew A; Turner, Jerrold R (2017) The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol 14:9-21
Tsai, Pei-Yun; Zhang, Bingkun; He, Wei-Qi et al. (2017) IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host Microbe 21:671-681.e4
Barefield, David Y; Puckelwartz, Megan J; Kim, Ellis Y et al. (2017) Experimental Modeling Supports a Role for MyBP-HL as a Novel Myofilament Component in Arrhythmia and Dilated Cardiomyopathy. Circulation 136:1477-1491
Odenwald, Matthew A; Choi, Wangsun; Buckley, Aaron et al. (2017) ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. J Cell Sci 130:243-259
Mitchell, Anthony; Tam, Christina; Elli, Derek et al. (2017) Glutathionylation of Yersinia pestis LcrV and Its Effects on Plague Pathogenesis. MBio 8:
Young, James S; McIntosh, Christine; Alegre, Maria-Luisa et al. (2017) Evolving Approaches in the Identification of Allograft-Reactive T and B Cells in Mice and Humans. Transplantation 101:2671-2681

Showing the most recent 10 out of 102 publications