This is the renewal of a very successful and internationally recognized training program, which has been active for 32 years. The goal of this program is to train talented young scientists for research careers in reproductive biology. The predoctoral program combines classroom work with seminars and state of the art training in research laboratories. The postdoctoral fellows dedicate the majority of their time to research, but audit courses as needed, attend seminar series and audit a course on writing grants. Supported by over $15 million in funding, the faculty members have been selected for interests and expertise that fall in three broad areas that cover key approaches to studying reproductive biology. These are: 1, the endocrine group;2, reproductive processes group;3, transgenic animal studies group. The endocrine group studies the mechanisms of action of molecules important for reproduction and particularly the function of steroid receptors and their associated coactivators and corepressors. The reproductive processes group studies the regulation of genes and biological processes in reproductive tissues and systems including ovary, testis, prostate, and mammary gland. The transgenic group uses transgenic approaches to knock out/overexpress proteins involved in reproduction to elucidate the roles of these proteins in vivo. Experimental approaches range from cutting edge techniques in molecular biology, protein chemistry, and microscopy to tissue specific knockouts using CRE recombinase, targeted overexpression and regulated gene expression in mice facilitating analysis of reproductive function at all levels. The program is designed for four predoctoral students and five postdoctoral fellows at various levels of experience. Assuming our current trainees complete three years and we fill new slots as they open, we anticipate having two postdoctoral trainees with one year of experience, two with two, and one with three, in the first year of support. Predoctoral training is typically five-six years with the last four years of support from the grant. Postdoctoral training is for up to three years, but many fellows are awarded individual fellowships limiting their support on this grant. In addition to the research facilities of the individual laboratories, trainees have access to both departmental and school wide core facilities including cores for cell culture, integrated microscopy, transgenic animals, real time RT-PCR, proteomics/protein chemistry, mass spectrometry, flow cytometry, microarrays/massively parallel sequencing, bioinformatics, and statistics. These provide state of the art equipment and assistance in the use of these techniques.

Public Health Relevance

The problems associated with reproduction, the consequent health of the mother and newborn, as well as control of fertility have a major impact on the health of Americans and on the economy of the country as well as on the well being of individuals. This training program prepares young scientists to address these important problems.

Agency
National Institute of Health (NIH)
Type
Institutional National Research Service Award (T32)
Project #
5T32HD007165-36
Application #
8662562
Study Section
Developmental Biology Subcommittee (CHHD)
Program Officer
Taymans, Susan
Project Start
Project End
Budget Start
Budget End
Support Year
36
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77030
Krause, William C; Shafi, Ayesha A; Nakka, Manjula et al. (2014) Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells. Int J Biochem Cell Biol 54:49-59
Large, Michael J; Wetendorf, Margeaux; Lanz, Rainer B et al. (2014) The epidermal growth factor receptor critically regulates endometrial function during early pregnancy. PLoS Genet 10:e1004451
Mullany, Lisa K; Liu, Zhilin; Wong, Kwong-Kwok et al. (2014) Tumor repressor protein 53 and steroid hormones provide a new paradigm for ovarian cancer metastases. Mol Endocrinol 28:127-37
Kim, Jung-Sun; Roberts, Justin M; Bingman 3rd, William E et al. (2014) The prostate cancer TMPRSS2:ERG fusion synergizes with the vitamin D receptor (VDR) to induce CYP24A1 expression-limiting VDR signaling. Endocrinology 155:3262-73
Blackmore, Julia K; Karmakar, Sudipan; Gu, Guowei et al. (2014) The SMRT coregulator enhances growth of estrogen receptor-?-positive breast cancer cells by promotion of cell cycle progression and inhibition of apoptosis. Endocrinology 155:3251-61
Shafi, Ayesha A; Cox, Marc B; Weigel, Nancy L (2013) Androgen receptor splice variants are resistant to inhibitors of Hsp90 and FKBP52, which alter androgen receptor activity and expression. Steroids 78:548-54
Obr, Alison E; Grimm, Sandra L; Bishop, Kathleen A et al. (2013) Progesterone receptor and Stat5 signaling cross talk through RANKL in mammary epithelial cells. Mol Endocrinol 27:1808-24
Obr, Alison E; Edwards, Dean P (2012) The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 357:4-17
Fan, Heng-Yu; Liu, Zhilin; Mullany, Lisa K et al. (2012) Consequences of RAS and MAPK activation in the ovary: the good, the bad and the ugly. Mol Cell Endocrinol 356:74-9
Franco, Heather L; Rubel, Cory A; Large, Michael J et al. (2012) Epithelial progesterone receptor exhibits pleiotropic roles in uterine development and function. FASEB J 26:1218-27

Showing the most recent 10 out of 55 publications