The Genomic Sciences Training Program (GSTP) is training the new generation of genomic scientists with strengths spanning across multiple disciplines. The training opportunities and environment we propose will enable our trainees to develop and apply new tools, derived from technological advances that are informed by cutting-edge statistical and computational approaches that functionalize diverse and large datasets. The new genomic approaches to biological and medical investigation demand scientists who are knowledgeable and skilled across several fields in effective ways that potentate new insights or inventions. Accordingly, the emergence of new tools allowing for the creation and interpretation of large-scale experimental efforts is what GSTP has focused on by the didactical interweaving of investigative approaches drawn from multiple fields (biology, genetics, physical sciences, engineering, computer science, and statistics) that were individually contoured for complementing a trainee's core disciplinary focus, yet built upon achievement and knowledge within the genomic sciences. Given the incredibly rich scientific and engineering breadth of the University of Wisconsin, GSTP was able to recruit outstanding trainees who greatly advanced mass spectroscopy, microarray technologies, computation, and bio-devices, while exploring new applications leveraging these advantages for cutting-edge investigation into proteomics, transcription, metabolomics, and genome biology. Such achievement has spawned the establishment of a significant genomics community on our campus through networking of trainees and trainers to become central hubs for groundbreaking collaborations reaching across departments, centers, and other training programs. We propose for the renewal of this program that we continue this focus with added emphasis on programmatic evaluation of GSTP, increased training in developing methods for analyzing and interpreting large datasets, and fostering of clinical applications. We request funding for training on a yearly basis: 10 predoctoral (1-3 yrs), 4 postdoctoral (1-3 yrs), and 2 short-term (0.25 yr) trainees;we will seek trainees with recent undergraduate and graduate degrees.

Public Health Relevance

Modern medical practice is now relying on the fruits of genomic research for analyzing the genetic makeup of patients and their cancers. New medical treatments are increasingly being tailored to individual patients for increasing their effectivenes and lessening side-effects. We propose to train scientists who will be developing the systems and analysis that will enable greater use of genomic information for biomedical researchers and the general public when they see a doctor.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HG002760-12
Application #
8677936
Study Section
Ethical, Legal, Social Implications Review Committee (GNOM)
Program Officer
Junkins, Heather
Project Start
2003-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
12
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Miscellaneous
Type
Graduate Schools
DUNS #
City
Madison
State
WI
Country
United States
Zip Code
53715
Rodríguez-Martínez, José A; Reinke, Aaron W; Bhimsaria, Devesh et al. (2017) Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. Elife 6:
Rand, Jacqueline M; Pisithkul, Tippapha; Clark, Ryan L et al. (2017) A metabolic pathway for catabolizing levulinic acid in bacteria. Nat Microbiol 2:1624-1634
Kounovsky-Shafer, Kristy L; Hernandez-Ortiz, Juan P; Potamousis, Konstantinos et al. (2017) Electrostatic confinement and manipulation of DNA molecules for genome analysis. Proc Natl Acad Sci U S A 114:13400-13405
Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A et al. (2017) Evolvix BEST Names for semantic reproducibility across code2brain interfaces. Ann N Y Acad Sci 1387:124-144
Jayaraman, Dhileepkumar; Richards, Alicia L; Westphall, Michael S et al. (2017) Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity. Plant J 90:1196-1207
Jiang, Peng; Nelson, Jeffrey D; Leng, Ning et al. (2017) Analysis of embryonic development in the unsequenced axolotl: Waves of transcriptomic upheaval and stability. Dev Biol 426:143-154
Minkoff, Benjamin B; Makino, Shin-Ichi; Haruta, Miyoshi et al. (2017) A cell-free method for expressing and reconstituting membrane proteins enables functional characterization of the plant receptor-like protein kinase FERONIA. J Biol Chem 292:5932-5942
Piscopo, Nicole J; Mueller, Katherine P; Das, Amritava et al. (2017) Bioengineering Solutions for Manufacturing Challenges in CAR T Cells. Biotechnol J :
Buxton, Katherine E; Kennedy-Darling, Julia; Shortreed, Michael R et al. (2017) Elucidating Protein-DNA Interactions in Human Alphoid Chromatin via Hybridization Capture and Mass Spectrometry. J Proteome Res 16:3433-3442
Stefely, Jonathan A; Kwiecien, Nicholas W; Freiberger, Elyse C et al. (2016) Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat Biotechnol 34:1191-1197

Showing the most recent 10 out of 167 publications