The goal of this Cardiovascular Research Program is to prepare scientists for research careers in the cardiovascular area, through interdisciplinary training at the predoctoral and postdoctoral levels. The University of Arizona is noted for its wel-established system of interdisciplinary graduate programs and for its tradition of collaborations across the traditional departmental, college and institutional boundaries. Thirty-eight training faculty from 13 departments and 6 colleges, all with well-funded collaborative research programs, provide strength in four broad areas of cardiovascular research: 1) molecular cardiovascular development;2) molecular system dynamics, 3) mechanisms of cardiovascular disease, and 4) cardiovascular disease - prevention, diagnosis and treatment. Faculty expertise in the traditional molecular, cellular and systems level approaches is complemented by their strengths in computational and modeling approaches, biophysical, nanotech, and in vivo and in vitro imaging approaches and a strong commitment to discovery, disease prevention and disease treatment. The Program's training environment benefits from strong support from the University and from University-supported core facilities in genomics, proteomics, and imaging. Together, the faculty and University provide a highly suitable environment for training in Cardiovascular Research. The training program is adaptable to the specific needs and interests of the trainees, while ensuring that they gain an appreciation for the breadth of cardiovascular research. Predoctoral training is designed around a 5-year program. The first year of training is designed to provide a broad background in physiology as well as to expose trainees to several research laboratories, multiple experimental approaches, and to practical aspects of careers in science. Training includes coursework in molecular and cellular physiology, systems biology, statistics, and scientific writing and ethics, laboratory rotations, student forum wherein all students make presentations annually, and a twice monthly seminar and "meet the speaker" program. In subsequent years, while continuing forum and seminar participation, trainees focus on their research area through specialty coursework, colloquia, tutorials, journal clubs and their dissertation research. During postdoctoral training (2 years), trainees expand their research focus area, learn additional state-of-the-art techniques, participate in the seminar series, and develop greater sophistication in experimental design skills particularly in the context of grant writing. All trainees attend national and international meetings and participate in twice annual symposia featuring the trainees'research. These activities along with the inter- and multi-disciplinary environment of our research facilities provide trainees with ample opportunities to interact with researchers within and outside their immediate environment, researchers who work in related areas and use a broad array of approaches. Based on the size and success of our training program, 93% of the 174 trainees supported by this program over the last 40 years remain engaged in research related positions, we request support for 7 predoctoral and 4 postdoctoral trainees.

Public Health Relevance

Cardiovascular diseases continue to be the major cause of morbidity and mortality in our country, reflecting the complex interactions of lifestyle choices, environment and genetic factors that modify the integrated function of proteins, cells, organs and organ systems and thereby alter disease susceptibility. Continued progress in diagnosis, treatment and prevention of cardiovascular diseases requires improved understanding of the mechanisms contributing to development and function of the cardiovascular system in health and disease. This training program brings together faculty committed to understanding these mechanisms through interdisciplinary and collaborative study at the molecular, cellular, systems and integrative levels and to training and mentoring the next generation of researchers.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
2T32HL007249-36A1
Application #
8337169
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Carlson, Drew E
Project Start
1977-07-01
Project End
2017-05-30
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
36
Fiscal Year
2012
Total Cost
$473,827
Indirect Cost
$32,803
Name
University of Arizona
Department
Physiology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Chen, Xiaochuan; Green, Alice S; Macko, Antoni R et al. (2014) Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep. Am J Physiol Endocrinol Metab 306:E58-64
Granzier, Henk L; Hutchinson, Kirk R; Tonino, Paola et al. (2014) Deleting titin's I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function. Proc Natl Acad Sci U S A 111:14589-94
Hart, Nathaniel J; Chung, Woo Jin; Weber, Craig et al. (2014) Hetero-bivalent GLP-1/glibenclamide for targeting pancreatic *-cells. Chembiochem 15:135-45
Good, Miranda E; Ek-Vitorín, José F; Burt, Janis M (2014) Structural determinants and proliferative consequences of connexin 37 hemichannel function in insulinoma cells. J Biol Chem 289:30379-86
Pollow, Dennis P; Uhrlaub, Jennifer; Romero-Aleshire, Melissa J et al. (2014) Sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension. Hypertension 64:384-90
Limesand, Sean W; Rozance, Paul J; Macko, Antoni R et al. (2013) Reductions in insulin concentrations and ýý-cell mass precede growth restriction in sheep fetuses with placental insufficiency. Am J Physiol Endocrinol Metab 304:E516-23
Fang, Jennifer S; Angelov, Stoyan N; Simon, Alexander M et al. (2013) Compromised regulation of tissue perfusion and arteriogenesis limit, in an AT1R-independent fashion, recovery of ischemic tissue in Cx40(-/-) mice. Am J Physiol Heart Circ Physiol 304:H816-27
Harper, Jaclyn N; Wright, Stephen H (2013) Multiple mechanisms of ligand interaction with the human organic cation transporter, OCT2. Am J Physiol Renal Physiol 304:F56-67
Sherwood, Cara L; Lantz, R Clark; Boitano, Scott (2013) Chronic arsenic exposure in nanomolar concentrations compromises wound response and intercellular signaling in airway epithelial cells. Toxicol Sci 132:222-34
Munger, Stephanie J; Kanady, John D; Simon, Alexander M (2013) Absence of venous valves in mice lacking Connexin37. Dev Biol 373:338-48

Showing the most recent 10 out of 54 publications