The faculty of the Basic Cardiovascular Research Training grant (CVTG) have developed superb faculty, an outstanding technical environment, and innovative teaching strategies that provide our trainees with: deep knowledge of cardiovascular biology and medicine, complex technical skills in a variety of related fields, and the ability to cooperate in complex, group-research projects. In this renewal application we request funding of 8 graduate students, and 7 post-doctoral fellows. The PI's, Drs. Duling and Owens, are leaders of exceptional standing in the scientific community, and we have a total of 50 basic- and physician-scientist mentors on our faculty, who have been carefully selected from multiple Divisions and Departments of the Schools of Medicine, Graduate Arts and Sciences, and Engineering. Trainees may chose from a remarkable range of areas of excellence including: fundamental studies of growth, differentiation, genetics and epigenetics of smooth muscle;endothelial cell signaling, and biology;and white cells mediation of inflammatory responses in the vessel wall. Integrative studies include: cardiovascular signaling, stem cell biology, tissue engineering, cell-cell communication;adaptive angiogenesis and vascular remodeling. Based on the presence of a strong group of R-01 funded clinical researchers, we offer training in translational research including: studies of vascular inflammation, atherosclerosis, hypertension, aneurysms, and stroke. The School's commitment to graduate training is evidenced by full institutional support of trainee stipends in the first yer: In that year, our pre- doctoral trainees must complete core graduate courses that provide an intense exposure to state-of-the-art biomedical knowledge, and engage in research rotations in 3 laboratories. At the end of the first year, students choose a faculty mentor, and a degree-granting department, and those passing a rigorous selection procedure, are chosen by the Executive Committee for support on the CVTG. Graduate students complete most course work during their 2nd year and are expected to obtain a degree in 4-6 years. Post-doctoral trainees are recommended directly to the TG by one of the mentors and are subjected to equally rigorous selection and typically spend 3-5 years in training. In addition to laboratory bench research, the training program provides a wide array of innovative educational activities including: superb seminars, Research in Progress presentations in a variety of novel forms, specialized lectures in selected CV topics and methods, and numerous workshops including grant writing and publication. Training is tracked by required annual reports, and all trainees are required to submit an application for independent funding in their first year on the training grant Publication of research work in top-flight journals is expected of all trainees.

Public Health Relevance

Biomedical research can only be conducted by highly motivated individuals, after years of rigorous training. Over the past 3 decades we have trained over 170 individuals who have pioneered major advances in our understanding and treatment of cardiovascular diseases through their own research as well as through training of their students and fellows.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Scott, Jane
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
Schools of Medicine
United States
Zip Code
Fielden, Samuel W; Mugler 3rd, John P; Hagspiel, Klaus D et al. (2015) Noncontrast peripheral MRA with spiral echo train imaging. Magn Reson Med 73:1026-33
Fielden, Samuel W; Meyer, Craig H (2015) A simple acquisition strategy to avoid off-resonance blurring in spiral imaging with redundant spiral-in/out k-space trajectories. Magn Reson Med 73:704-10
Fielden, Samuel W; Mugler 3rd, John P; Hagspiel, Klaus D et al. (2014) Refocused turbo spin-echo for noncontrast peripheral MR angiography. J Magn Reson Imaging 39:1468-76
Okutsu, Mitsuharu; Call, Jarrod A; Lira, Vitor A et al. (2014) Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure. Circ Heart Fail 7:519-30
Lira, Vitor A; Okutsu, Mitsuharu; Zhang, Mei et al. (2013) Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 27:4184-93
Feaver, Ryan E; Gelfand, Bradley D; Blackman, Brett R (2013) Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat Commun 4:1525
Brinkman, C Colin; Rouhani, Sherin J; Srinivasan, Nithya et al. (2013) Peripheral tissue homing receptors enable T cell entry into lymph nodes and affect the anatomical distribution of memory cells. J Immunol 191:2412-25
Huang, Cynthia; Das, Anusuya; Barker, Daniel et al. (2012) Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation. Cell Tissue Res 347:553-66
Billaud, Marie; Lohman, Alexander W; Straub, Adam C et al. (2012) Characterization of the thoracodorsal artery: morphology and reactivity. Microcirculation 19:360-72
Alexander, Matthew R; Moehle, Christopher W; Johnson, Jason L et al. (2012) Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest 122:70-9

Showing the most recent 10 out of 101 publications