The Washington University Training Program in Principles of Pulmonary Research provides predoctoral and postdoctoral research training in the disciplines of respiratory cell and molecular biology, genetics, immunology, microbiology, pharmacology, physiology, structural and chemical biology and biochemistry, and developmental biology. The Program emphasizes scientific approaches critical to understanding mechanisms of lung disease with components of fundamental, translational, and clinical research. The postdoctoral portion of the training program enables physicians training in pulmonary and critical care medicine to learn how to perform state-of-the-art scientific research in concert with Ph.D. trainees from a basic science background. In addition, predoctoral trainees in the M.D./Ph.D. and Ph.D. programs in the Division of Biology and Biomedical Sciences are a vital component of the Program.
The aim of the Program is to promote the scientific growth of trainees so they may enter academic pulmonary medicine with the skills needed to study problems relevant to understanding respiratory diseases. The primary and support training faculty consists of 54 full-time members of the Departments of Biostatistics, Biochemistry, Bioengineering, Chemistry, Cell Biology/Physiology, Genetics, Internal Medicine, Molecular Biology/Pharmacology, Microbiology, Pathology/Immunology, Pediatrics, Physics, Radiology, and Surgery. Current research projects span the gamut of respiratory science. The nature of the faculty and the scientific projects ensures a well- organized, multidisciplinary interface of pulmonary researchers with basic scientists. The program is designed to provide trainees with an intensive laboratory or clinical research experience supplemented by graduate coursework and research conferences. In the laboratory, trainees utilize cutting-edge approaches relevant to their particular investigative area. Basic science courses and conferences are used to build skills in evaluating scientific literature, identifying important questions, designing experimental approaches, and organizing, analyzing, and presenting scientific data. Each trainee is under the supervision of a mentor and other supervisory experts as needed for the specific project, and the Program closely monitors trainee and mentor performance. These mechanisms serve to ensure high level trainee experiences in research techniques, lecture presentation, manuscript preparation, grant application, and mentoring.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL007317-35
Application #
8293160
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Tigno, Xenia
Project Start
1978-07-01
Project End
2013-07-31
Budget Start
2012-07-01
Budget End
2013-07-31
Support Year
35
Fiscal Year
2012
Total Cost
$486,236
Indirect Cost
$45,399
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Sala-Rabanal, Monica; Yurtsever, Zeynep; Berry, Kayla N et al. (2017) Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). J Biol Chem 292:9164-9174
Trivedi, Abhaya; Hall, Chase; Hoffman, Eric A et al. (2017) Using imaging as a biomarker for asthma. J Allergy Clin Immunol 139:1-10
Elvington, Michelle; Liszewski, M Kathryn; Bertram, Paula et al. (2017) A C3(H20) recycling pathway is a component of the intracellular complement system. J Clin Invest 127:970-981
Oetjen, Landon K; Mack, Madison R; Feng, Jing et al. (2017) Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 171:217-228.e13
Guzy, Robert D; Li, Ling; Smith, Craig et al. (2017) Pulmonary fibrosis requires cell-autonomous mesenchymal fibroblast growth factor (FGF) signaling. J Biol Chem 292:10364-10378
Domingo-Gonzalez, Racquel; Das, Shibali; Griffiths, Kristin L et al. (2017) Interleukin-17 limits hypoxia-inducible factor 1? and development of hypoxic granulomas during tuberculosis. JCI Insight 2:
Liszewski, M Kathryn; Elvington, Michelle; Kulkarni, Hrishikesh S et al. (2017) Complement's hidden arsenal: New insights and novel functions inside the cell. Mol Immunol 84:2-9
Monaco, Cynthia L; Gootenberg, David B; Zhao, Guoyan et al. (2016) Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host Microbe 19:311-22
Lu, Qun; Yokoyama, Christine C; Williams, Jesse W et al. (2016) Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene Epg5 and Additional Autophagy Genes Promotes Influenza Pathogenesis. Cell Host Microbe 19:102-13
Oetjen, Landon K; Noti, Mario; Kim, Brian S (2016) New insights into basophil heterogeneity. Semin Immunopathol 38:549-61

Showing the most recent 10 out of 121 publications