This application requests continued funding for a research training program in hematology that has been successful in attracting young physician-scientists into academic medicine. The program has as its primary objective to prepare MD, MD/PhD, and PhD postdoctoral fellows for productive careers as academic scientists and physician-scientists. The focus of training supported by this grant remains within the scientific discipline of hematology. An evolving feature of the training program is an expanded emphasis to provide training opportunities in translational research. The training will be carried out in an enriched environment of active basic and clinical investigation at an institution that emphasizes the career development of physician scientists. The specific objectives are: 1) To identify and recruit outstanding postdoctoral trainees, inclusive of gender and ethnicity, who wish to obtain comprehensive knowledge of the principles and techniques of basic or translational research related to hematology;2) To attract highly motivated clinicians to enter careers as physician-scientists and provide them with comprehensive instruction in the design and implementation of high quality research projects, including participation in cross-disciplinary research teams;3) To train physician-scientists for academic careers in hematology and related scientific disciplines and prepare them for a successful transition to independence;4) To expose talented Ph.D. scientists to the field of hematology and train them for careers as independent investigators. Since the last renewal, the training program has undergone a transition to new leadership and several new initiatives have been instituted. These include a formal external review process, the establishment of a mentoring committee for each trainee, and the implementation of several new strategies to improve the recruitment of trainees from underrepresented minority groups. The rich training environment provided by the diverse faculty, extensive laboratory, clinical, and core facilities, and strong institutional support should ensure continued success in attracting and preparing highly qualified postdoctoral trainees for careers in academic hematology.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL007344-33
Application #
8111106
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Chang, Henry
Project Start
1988-07-01
Project End
2014-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
33
Fiscal Year
2011
Total Cost
$262,810
Indirect Cost
Name
University of Iowa
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Gu, Sean X; Lentz, Steven R (2018) Fibrin films: overlooked hemostatic barriers against microbial infiltration. J Clin Invest 128:3243-3245
Gu, S X; Lentz, S R (2018) Targeting platelet EPCR for better therapeutic factor VIIa activity. J Thromb Haemost 16:1814-1816
Tsushima, Kensuke; Bugger, Heiko; Wende, Adam R et al. (2018) Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circ Res 122:58-73
Fidler, Trevor P; Rowley, Jesse W; Araujo, Claudia et al. (2017) Superoxide Dismutase 2 is dispensable for platelet function. Thromb Haemost 117:1859-1867
Kruspe, Sven; Dickey, David D; Urak, Kevin T et al. (2017) Rapid and Sensitive Detection of Breast Cancer Cells in Patient Blood with Nuclease-Activated Probe Technology. Mol Ther Nucleic Acids 8:542-557
Vikram, Ajit; Lewarchik, Christopher M; Yoon, Jin-Young et al. (2017) Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel. Nat Med 23:361-367
DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C et al. (2017) ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis. Cell Rep 19:1794-1806
Kumar, Santosh; Kim, Young-Rae; Vikram, Ajit et al. (2017) Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc Natl Acad Sci U S A 114:1714-1719
Rogers, Laura M; Mott, Sarah L; Smith, Brian J et al. (2017) Complement-Regulatory Proteins CFHR1 and CFHR3 and Patient Response to Anti-CD20 Monoclonal Antibody Therapy. Clin Cancer Res 23:954-961
Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D et al. (2017) The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Mol Metab 6:1468-1479

Showing the most recent 10 out of 120 publications