Our training program in pulmonary disease provides comprehensive research training for individuals with a serious commitment to a career in lung biology and biomedical research, particularly as it interfaces with clinical pulmonary medicine. Our primary premise has long been that lung disease represents major health problems in the U.S. and that progress toward improved understanding of the pathobiology of these diseases are required to make progress toward treatment and prevention. The program has a long history (30m years), training numerous physicians and scientists who have subscribed to this mission, and have become leaders in academic pulmonary medicine. The program is under new leadership and strives to maintain the previous scientific and training success, while adapting the next generation of researchers to new basic and translational science and technology. Recent changes have included expanded resources (recruitment of 24 new faculty members, and doubling the laboratory space). This has allowed us to broaden the scope of research questions related to lung biology, and attack the problems at the most basic and translational levels incorporating new cores in the Lung Biology ad Clinical Center Center and Harvard Medical Center. We have also enhanced our didactic program and further solidified program organization for oversight and mentoring of trainees. We identify trainees with a demonstrated interest in a research career. We also identify an environment where these individuals can pursue a problem of interest and in which creative and solid thinking combined with state-of-the-art technology is being used to pursue the problem, and provide them with the tools and mind-set to attack other problems in the future. Finally, we provide a prolonged period of support so that trainees are prepared to ultimately become a productive independent investigator, and the next leaders in pulmonary academics. Of the 38 trainees who have completed the program, 35 trainees in the last 10 years (92%) remain in academic medicine and research, 2 trainees are performing clinical research in industry, and only one trainee in the past decade is now in private practice. These trainees obtained 36 grant awards consisting of 20 NIH mentorship awards (K-and F Awards), 5 independent R-awards, 1 Project Leader on PPG, 2 Clinical Research Network grants, 3 Parker B. Francis awards, and 6 foundation awards (ATS/ALA, CF foundation), and have published 191 papers with their training grant mentors. As the Program Director of this training program, he will continue to work with the utmost enthusiasm and energy to ensure that the trainees of our training program will continue to excel and contribute significantly to the academic pulmonary community.

Public Health Relevance

Training program in pulmonary disease provides comprehensive research training for individuals with a serious commitment to a career in biomedical research focused on lung disease. Our primary goal is to train the next generation of physician scientist and scientist to become independent researchers in academic medicine to better understand the pathogenesis of lung disease and identify new therapeutic modalities in lung disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
2T32HL007633-26
Application #
8017830
Study Section
Special Emphasis Panel (ZHL1-CSR-M (O1))
Program Officer
Rothgeb, Ann E
Project Start
1985-07-01
Project End
2016-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
26
Fiscal Year
2011
Total Cost
$506,785
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Ash, Samuel Y; Harmouche, Rola; Putman, Rachel K et al. (2017) Clinical and Genetic Associations of Objectively Identified Interstitial Changes in Smokers. Chest 152:780-791
Ash, Samuel Y; Harmouche, Rola; Ross, James C et al. (2017) The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers. Acad Radiol 24:941-946
Beitler, Jeremy R; Ghafouri, Tiffany Bita; Jinadasa, Sayuri P et al. (2017) Favorable Neurocognitive Outcome with Low Tidal Volume Ventilation after Cardiac Arrest. Am J Respir Crit Care Med 195:1198-1206
Taglauer, Elizabeth S; Artemiuk, Patrycja A; Hanscom, Sara R et al. (2017) Rab11 family expression in the human placenta: Localization at the maternal-fetal interface. PLoS One 12:e0184864
Stump, Benjamin; Cui, Ye; Kidambi, Pranav et al. (2017) Lymphatic Changes in Respiratory Diseases: More than Just Remodeling of the Lung? Am J Respir Cell Mol Biol 57:272-279
Miller, Ezra R; Putman, Rachel K; Vivero, Marina et al. (2017) Histopathology of Interstitial Lung Abnormalities in the Context of Lung Nodule Resections. Am J Respir Crit Care Med :
Rudolf, Joseph W; Dighe, Anand S; Coley, Christopher M et al. (2017) Analysis of Daily Laboratory Orders at a Large Urban Academic Center: A Multifaceted Approach to Changing Test Ordering Patterns. Am J Clin Pathol 148:128-135
Putman, Rachel K; Gudmundsson, Gunnar; Araki, Tetsuro et al. (2017) The MUC5B promoter polymorphism is associated with specific interstitial lung abnormality subtypes. Eur Respir J 50:
Ghanta, Sailaja; Tsoyi, Konstantin; Liu, Xiaoli et al. (2017) Mesenchymal Stromal Cells Deficient in Autophagy Proteins Are Susceptible to Oxidative Injury and Mitochondrial Dysfunction. Am J Respir Cell Mol Biol 56:300-309
Filippakis, Harilaos; Alesi, Nicola; Ogorek, Barbara et al. (2017) Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated via NPC1 and LDL-R. Oncotarget 8:38099-38112

Showing the most recent 10 out of 168 publications