This is a competitive renewal of a multi-disciplinary, post-doctoral cardiovascular research program Sponsored by the Cardiology Unit of the Dept. of Medicine and the Depts. of Molecular Physiology and Biophysics and Pharmacology of the University of Vermont College of Medicine. This grant has been funded since 1988. The goal of the program is to provide rigorous training for both MDs and PhDs that will equip them for productive research careers in cardiovascular science. MD trainees are recruited primarily in conjunction with the clinical Cardiology Fellowship Program at the University of Vermont, while PhDs are mainly recruited through the two basic science departments. The 18 participating faculty are divided into four thematic groups: 1) Cardiac Muscle and Heart Failure, 2) Smooth Muscle, 3) Vascular Biology, and 4) Clinical Cardiology and Epidemiology. Training is centered around a focussed laboratory or clinical research experience under the supervision of a primary mentor and a secondary mentor. Interactions with participating faculty within each thematic group and across boundaries are encouraged and facilitated. Trainees in Clinical Cardiology and Epidemiology take required seminar courses in study design and biostatistics, which are open to other trainees if they are deemed useful or necessary. All trainees attend a seminar series on responsible conduct of research. Administrative and policy decisions and overall oversight of trainees'progress is accomplished by a Steering Committee composed of the Pland Drs. David Warshaw and Mark Nelson, Chairs of Molecular Physiology and Biophysics and Pharmacology, respectively. The philosophy of the training program is to provide both focus and flexibility, a collaborative environment, and carefully designed, supportive mentoring relationships.

Public Health Relevance

The ulitmate goal of this Training Program Is to train phyisicans and scientists who will make meaningful contributions to the understanding, diagnosis and treatment of human cardiovascular disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Carlson, Drew E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Vermont & St Agric College
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Heppner, Thomas J; Tykocki, Nathan R; Hill-Eubanks, David et al. (2016) Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling. J Gen Physiol 147:323-35
Previs, Michael J; Mun, Ji Young; Michalek, Arthur J et al. (2016) Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. Proc Natl Acad Sci U S A 113:3239-44
Callahan, Damien M; Tourville, Timothy W; Miller, Mark S et al. (2015) Chronic disuse and skeletal muscle structure in older adults: sex-specific differences and relationships to contractile function. Am J Physiol Cell Physiol 308:C932-43
Callahan, Damien M; Tourville, Timothy W; Slauterbeck, James R et al. (2015) Reduced rate of knee extensor torque development in older adults with knee osteoarthritis is associated with intrinsic muscle contractile deficits. Exp Gerontol 72:16-21
Moon, Thomas M; Tykocki, Nathan R; Sheehe, Jessica L et al. (2015) Synthetic Peptides as cGMP-Independent Activators of cGMP-Dependent Protein Kinase Iα. Chem Biol 22:1653-61
Tykocki, Nathan R; Nelson, Mark T (2015) Location, Location, Location: Juxtaposed calcium-signaling microdomains as a novel model of the vascular smooth muscle myogenic response. J Gen Physiol 146:129-32
Callahan, Damien M; Miller, Mark S; Sweeny, Andrew P et al. (2014) Muscle disuse alters skeletal muscle contractile function at the molecular and cellular levels in older adult humans in a sex-specific manner. J Physiol 592:4555-73
Miller, Mark S; Callahan, Damien M; Toth, Michael J (2014) Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans. Front Physiol 5:369
Tanner, Bertrand C W; McNabb, Mark; Palmer, Bradley M et al. (2014) Random myosin loss along thick-filaments increases myosin attachment time and the proportion of bound myosin heads to mitigate force decline in skeletal muscle. Arch Biochem Biophys 552-553:117-27
Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari et al. (2014) Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function. J Appl Physiol (1985) 116:1582-92

Showing the most recent 10 out of 36 publications