This application seeks renewal of support for the Vascular Biology Training Program now housed within the Center for Vascular and Inflammatory Diseases (OVID) at the University of Maryland School of Medicine in Baltimore, MD. The goals of this training program are to provide multidisciplinary training for 4 pre and 4 post doctoral scientists at the forefront of research related to the molecular and physiological basis of vascular disease and to develop a clear understanding of molecular, cellular, and physiological mechanisms that maintain health of the vasculature. The program has specific features and dedicated components to address two emerging critical needs in current cardiovascular research: 1) to provide first-rate basic science laboratory training for clinical M.D.'s (residents) to form the basis for their careers as future clinician- investigators studying the cellular and molecular basis of cardiovascular diseases relevant to their clinical disciplines, and 2) to expose pre- and post-doctoral Ph.D. trainees In basic research to clinical cardiovascular pathophysiology to provide a disease-related framework for their training. To accomplish these goals we will 1) take advantage of the multidisciplinary and highly interactive environment within the OVID and at the University of Maryland Baltimore campus to provide multidisciplinary in thrombosis, vascular biology, stem cell biology, immunology and inflammation, 2) provide comprehensive and state-of-the-art scientific training experience for clinical trainees by establishing links with the outstanding clinical faculty at the University of Maryland and with the appropriate residency training programs 3) Provide appropriate clinical experience to our pre- and post-doctoral trainees in basic research by designing both didactic and hands on components guided by both PhD and MD faculty 4) Aid all of our trainees in their path to independence with regard to obtaining extramural funding and making the critical transition from trainee to mentored independent investigators. The training program has an excellent training record of producing productive and funded scientists at academic institutions and active researchers and leaders within the Biotechnology Industry. 4 pre and 4 postdoctoral trainees can choose from 21 mentors in seven departments. The training program offers unique didactic component that provides trainees with state-of-the art knowledge in Vascular and Stem Cell Biology and Clinical Cardiovascular Disease, vigorous and unique seminar programs, and skills courses that ensure their success in a competitive science environment.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Mondoro, Traci
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
Schools of Medicine
United States
Zip Code
Matyas, Jessica J; O'Driscoll, Cliona M; Yu, Laina et al. (2017) Truncated TrkB.T1-Mediated Astrocyte Dysfunction Contributes to Impaired Motor Function and Neuropathic Pain after Spinal Cord Injury. J Neurosci 37:3956-3971
Leung, Lisa M; Fondrie, William E; Doi, Yohei et al. (2017) Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids. Sci Rep 7:6403
Azimzadeh, Agnes M; Zhang, Tianshu; Wu, Guosheng et al. (2017) Preemptive CD20+ B cell Depletion Attenuates Cardiac Allograft Vasculopathy in CD154-Treated Monkeys. Transplantation 101:63-73
Armstrong, Cheryl L; Galisteo, Rebeca; Brown, Sharron A N et al. (2016) TWEAK activation of the non-canonical NF-?B signaling pathway differentially regulates melanoma and prostate cancer cell invasion. Oncotarget 7:81474-81492
Adair, Patrick; Kim, Yong Chan; Pratt, Kathleen P et al. (2016) Avidity of human T cell receptor engineered CD4(+) T cells drives T-helper differentiation fate. Cell Immunol 299:30-41
Landers-Ramos, Rian Q; Corrigan, Kelsey J; Guth, Lisa M et al. (2016) Short-term exercise training improves flow-mediated dilation and circulating angiogenic cell number in older sedentary adults. Appl Physiol Nutr Metab 41:832-41
Skovira, Jacob W; Wu, Junfang; Matyas, Jessica J et al. (2016) Cell cycle inhibition reduces inflammatory responses, neuronal loss, and cognitive deficits induced by hypobaria exposure following traumatic brain injury. J Neuroinflammation 13:299
Aicher, Brittany O; Frishman, William H (2016) Electronic Cigarettes: Questions in the Mist. Cardiol Rev 24:261-267
Li, Lushen; Liu, Hongyu; Baxter, Shaneen S et al. (2016) The SH3 domain distinguishes the role of I-BAR proteins IRTKS and MIM in chemotactic response to serum. Biochem Biophys Res Commun 479:787-792
Noyes, Nathaniel C; Hampton, Brian; Migliorini, Mary et al. (2016) Regulation of Itch and Nedd4 E3 Ligase Activity and Degradation by LRAD3. Biochemistry 55:1204-13

Showing the most recent 10 out of 65 publications