! This proposal is the fourth competing renewal of our Training Grant in Lung Science. During the last 18 and a half years, the Training Grant has provided 71 trainees the opportunity to develop strong foundations in lung science, including 42 MDs, 13 PhDs and 16 Predoctoral graduate students. Of the 12 predoctoral students who completed T32 support, three are in faculty positions, one is a staff scientist at CDC, seven are still in training and one is an industry scientist Among the 10 postdoctoral PhD trainees who no longer are T32-supported, four are in faculty positions, one is doing research with a Fogarty fellowship and three are research scientists in academics or industry. Eleven of the 18 MD postdoctoral trainees who received support entered academic faculty positions and ten remain as faculty. We have increased the inclusion of MD-PhD trainees and under-represented minorities supported by this grant. The three major aims of our Training Program are to: (1) provide 3 years of rigorous scientific training for physician-scientists, enabling them to become independent investigators examining scientific questions related to human lung disease;(2) provide up to 3 years of post-doctoral training to PhD scientists focusing their studies in lung biology and promoting long term careers in this field; and (3) train graduate students from the MD-PhD program and other established degree-granting programs - and guide them into careers in lung research. MD trainees are strongly encouraged to obtain advanced degrees to optimize their opportunities for a successful investigative career. The three major curricular areas encompassed by the program are: (1) Cell &Molecular Biology;(2) Systems Biology, Bioengineering;&Bio-Informatics;and (3) Clinical &Public Health Research. The curriculum provides formal training and degree opportunities for PhD degrees in Biochemistry, Molecular Biology &Biochemistry;Genetics, Cell Biology &Development;Microbiology, Immunology;&Cancer Biology;Bioengineering;Bioinformatics;for Masters degrees in Public Health or Clinical Research;or for Certificate Program in Clinical Research. The Training Faculty is drawn from 4 Academic Health Center colleges and the College of Science &Engineering. Faculty expertise extends across a broad spectrum, including: pulmonary fibrosis;lung injury;lung cancer;COPD; sleep medicine;asthma;cystic fibrosis;and bioethics. Comprehensive resources and stable research funding in each area provide an outstanding training environment.!

Public Health Relevance

! ! ! This proposal is for continued funding of the Lung Biology Training program at the University Minnesota. This program provides three years of funding for eight postdoctoral MDs and PhDs to undertake an intensive state of the art research project supplemented by formal coursework and potentially while obtaining an advanced degree. It also supports training of four highly promising graduate students in lung biology while completing their thesis and obtaining their PhD. We offer outstanding multidisciplinary faculty trainers in three general domains: cell and molecular biology;systems biology, bioengineering and bio- informatics;and clinical and public health research. After completing this program, trainees should be ideally positioned to obtain a transitional career development grant that helps them obtain an academic faculty position.!

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Colombini-Hatch, Sandra
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D et al. (2016) Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension. Hypertension 68:1415-1423
Li, Jinhui; Barylko, Barbara; Eichorst, John P et al. (2016) Association of Endophilin B1 with Cytoplasmic Vesicles. Biophys J 111:565-76
Gulcev, Makedonka; Reilly, Cavan; Griffin, Timothy J et al. (2016) Tryptophan catabolism in acute exacerbations of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 11:2435-2446
Avdulov, Svetlana; Herrera, Jeremy; Smith, Karen et al. (2015) eIF4E threshold levels differ in governing normal and neoplastic expansion of mammary stem and luminal progenitor cells. Cancer Res 75:687-97
Peterson, Nicholas D; Rosen, Brandon C; Dillon, Nicholas A et al. (2015) Uncoupling Environmental pH and Intrabacterial Acidification from Pyrazinamide Susceptibility in Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:7320-6
Khalil, Wajahat; Xia, Hong; Bodempudi, Vidya et al. (2015) Pathologic Regulation of Collagen I by an Aberrant Protein Phosphatase 2A/Histone Deacetylase C4/MicroRNA-29 Signal Axis in Idiopathic Pulmonary Fibrosis Fibroblasts. Am J Respir Cell Mol Biol 53:391-9
Patel, Jayshil J; Taneja, Amit; Niccum, David et al. (2015) The association of serum bilirubin levels on the outcomes of severe sepsis. J Intensive Care Med 30:23-9
Schuldt, Nathaniel J; Auger, Jennifer L; Hogquist, Kristin A et al. (2015) Bi-Allelic TCRα or β Recombination Enhances T Cell Development but Is Dispensable for Antigen Responses and Experimental Autoimmune Encephalomyelitis. PLoS One 10:e0145762
Price, Andrew P; Godin, Lindsay M; Domek, Alex et al. (2015) Automated decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng Part C Methods 21:94-103
Raza, Kashif; Larsen, Trevor; Samaratunga, Nath et al. (2014) MSC therapy attenuates obliterative bronchiolitis after murine bone marrow transplant. PLoS One 9:e109034

Showing the most recent 10 out of 52 publications