! This proposal is the fourth competing renewal of our Training Grant in Lung Science. During the last 18 and a half years, the Training Grant has provided 71 trainees the opportunity to develop strong foundations in lung science, including 42 MDs, 13 PhDs and 16 Predoctoral graduate students. Of the 12 predoctoral students who completed T32 support, three are in faculty positions, one is a staff scientist at CDC, seven are still in training and one is an industry scientist Among the 10 postdoctoral PhD trainees who no longer are T32-supported, four are in faculty positions, one is doing research with a Fogarty fellowship and three are research scientists in academics or industry. Eleven of the 18 MD postdoctoral trainees who received support entered academic faculty positions and ten remain as faculty. We have increased the inclusion of MD-PhD trainees and under-represented minorities supported by this grant. The three major aims of our Training Program are to: (1) provide 3 years of rigorous scientific training for physician-scientists, enabling them to become independent investigators examining scientific questions related to human lung disease;(2) provide up to 3 years of post-doctoral training to PhD scientists focusing their studies in lung biology and promoting long term careers in this field; and (3) train graduate students from the MD-PhD program and other established degree-granting programs - and guide them into careers in lung research. MD trainees are strongly encouraged to obtain advanced degrees to optimize their opportunities for a successful investigative career. The three major curricular areas encompassed by the program are: (1) Cell &Molecular Biology;(2) Systems Biology, Bioengineering;&Bio-Informatics;and (3) Clinical &Public Health Research. The curriculum provides formal training and degree opportunities for PhD degrees in Biochemistry, Molecular Biology &Biochemistry;Genetics, Cell Biology &Development;Microbiology, Immunology;&Cancer Biology;Bioengineering;Bioinformatics;for Masters degrees in Public Health or Clinical Research;or for Certificate Program in Clinical Research. The Training Faculty is drawn from 4 Academic Health Center colleges and the College of Science &Engineering. Faculty expertise extends across a broad spectrum, including: pulmonary fibrosis;lung injury;lung cancer;COPD; sleep medicine;asthma;cystic fibrosis;and bioethics. Comprehensive resources and stable research funding in each area provide an outstanding training environment.!

Public Health Relevance

! ! ! This proposal is for continued funding of the Lung Biology Training program at the University Minnesota. This program provides three years of funding for eight postdoctoral MDs and PhDs to undertake an intensive state of the art research project supplemented by formal coursework and potentially while obtaining an advanced degree. It also supports training of four highly promising graduate students in lung biology while completing their thesis and obtaining their PhD. We offer outstanding multidisciplinary faculty trainers in three general domains: cell and molecular biology;systems biology, bioengineering and bio- informatics;and clinical and public health research. After completing this program, trainees should be ideally positioned to obtain a transitional career development grant that helps them obtain an academic faculty position.!

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Colombini-Hatch, Sandra
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Raza, Kashif; Larsen, Trevor; Samaratunga, Nath et al. (2014) MSC therapy attenuates obliterative bronchiolitis after murine bone marrow transplant. PLoS One 9:e109034
Dillon, Nicholas A; Peterson, Nicholas D; Rosen, Brandon C et al. (2014) Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob Agents Chemother 58:7258-63
Wendt, Christine; Tram, Kevin; Price, Andrew et al. (2013) Club cell secretory protein improves survival in a murine obliterative bronchiolitis model. Am J Physiol Lung Cell Mol Physiol 305:L642-50
Linden, Michael A; Kirchhof, Nicole; Carlson, Cathy S et al. (2012) Targeted overexpression of an activated N-ras gene results in B-cell and plasma cell lymphoproliferation and cooperates with c-myc to induce fatal B-cell neoplasia. Exp Hematol 40:216-27
Kunisaki, Ken M; Rector, Thomas S (2011) Vitamin D and responses to inhaled fluticasone in severe chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 6:29-34
Ghosh, Goutam; Subramanian, Indira V; Adhikari, Neeta et al. (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-ýý isoforms and promotes angiogenesis. J Clin Invest 120:4141-54
Curtis, Jessica M; Grimsrud, Paul A; Wright, Wendy S et al. (2010) Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes 59:1132-42
Dougherty, Dawne C; Park, Hyi-Man; Sanders, Michel M (2009) Interferon regulatory factors (IRFs) repress transcription of the chicken ovalbumin gene. Gene 439:63-70
Bhargava, Maneesh; Lei, Jianxun; Ingbar, David H (2009) Nongenomic actions of L-thyroxine and 3,5,3'-triiodo-L-thyronine. Focus on "L-Thyroxine vs. 3,5,3'-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase". Am J Physiol Cell Physiol 296:C977-9
Kim, Yong Y; Von Weymarn, Linda; Larsson, Ola et al. (2009) Eukaryotic initiation factor 4E binding protein family of proteins: sentinels at a translational control checkpoint in lung tumor defense. Cancer Res 69:8455-62

Showing the most recent 10 out of 38 publications