This competing continuation application is to support 5 post-doctoral positions for training in lung cellular and molecular biology. The purpose of the program is to provide Ph.D.s and M.D.s (primarily pulmonary physicians) with the specialized expertise required to become independent investigators in lung cellular and molecular biology. The program is based in the Institute for Environmental Medicine while the 11 members of the interdisciplinary faculty are drawn from across the University of Pennsylvania Medical Center. The faculty have a long history of extensive interaction in research and training and routinely share resources and facilities for these purposes. The program is designed for 2-3 years of training for a range of candidates from those who have just received their advanced degree (Ph.D.) or specialty training (M.D.) up to more experienced candidates who desire to reorient their career towards lung-related research. The program provides the trainee with an intensive research experience with one or more preceptors, exposure to a broad range of "state of the art" technologies with direct relevance to investigation in lung cellular and molecular biology, experience in presentation of data to a critical audience, engendering familiarity and critical analysis of the biomedical literature in lung biology, development of skills in writing a manuscript for publication and a research grant for submission to a funding agency, and training in the ethical conduct of research. Our program has trained 34 post-doctoral fellows including 3 minority scientists during the past 14 years with the majority of graduates continuing a career in biomedical investigation. At the conclusion of the post-doctoral period, trainees will be prepared to obtain an appointment at the junior faculty level in a Medical School or comparable position.

Public Health Relevance

Acute and chronic lung disease represent important threats to human health. The key to understanding the root causes and for designing therapy for most of the diseases is to understand their basic cellular and molecular predispositions and manifestations. This program will train scientists with advanced degrees (MD or PhD) in the rationale and basic methodology for investigating these aspects of lung pathophysiology.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Colombini-Hatch, Sandra
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Chowdhury, Ibrul; Fisher, Aron B; Christofidou-Solomidou, Melpo et al. (2014) Keratinocyte growth factor and glucocorticoid induction of human peroxiredoxin 6 gene expression occur by independent mechanisms that are synergistic. Antioxid Redox Signal 20:391-402
Orndorff, Rebecca L; Hong, Nankang; Yu, Kevin et al. (2014) NOX2 in lung inflammation: quantum dot based in situ imaging of NOX2-mediated expression of vascular cell adhesion molecule-1. Am J Physiol Lung Cell Mol Physiol 306:L260-8
O'Neill, S M; Hinkle, C; Chen, S-J et al. (2014) Targeting adipose tissue via systemic gene therapy. Gene Ther 21:653-61
Browning, Elizabeth; Wang, Hui; Hong, Nankang et al. (2014) Mechanotransduction drives post ischemic revascularization through K(ATP) channel closure and production of reactive oxygen species. Antioxid Redox Signal 20:872-86
Roszell, Blair R; Tao, Jian-Qin; Yu, Kevin J et al. (2013) Pulmonary abnormalities in animal models due to Niemann-Pick type C1 (NPC1) or C2 (NPC2) disease. PLoS One 8:e67084
Roszell, Blair R; Tao, Jian-Qin; Yu, Kevin J et al. (2012) Characterization of the Niemann-Pick C pathway in alveolar type II cells and lamellar bodies of the lung. Am J Physiol Lung Cell Mol Physiol 302:L919-32
Bish, Lawrence T; Sleeper, Meg M; Forbes, Sean C et al. (2012) Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol Ther 20:580-9
Maguire, Jean Ann; Mulugeta, Surafel; Beers, Michael F (2012) Multiple ways to die: delineation of the unfolded protein response and apoptosis induced by Surfactant Protein C BRICHOS mutants. Int J Biochem Cell Biol 44:101-12
Bish, Lawrence T; Sleeper, Meg M; Reynolds, Caryn et al. (2011) Cardiac gene transfer of short hairpin RNA directed against phospholamban effectively knocks down gene expression but causes cellular toxicity in canines. Hum Gene Ther 22:969-77
Maguire, Jean Ann; Mulugeta, Surafel; Beers, Michael F (2011) Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am J Respir Cell Mol Biol 44:404-14

Showing the most recent 10 out of 30 publications