The "Multidisciplinary Training in Lung Biology" training grant seeks to produce outstanding, independent biomedical scientists who investigate the mechanisms, manifestations, preventions and cures for lung disorders. The program is establishing a track record of training, mentoring, and extensive interactive collaborations between basic science and clinical faculty. This interdisciplinary program is designed both for predoctoral students (N=4) to pursue their Ph.D. or M.D. /Ph.D. degrees, and for postdoctoral fellows, either MD or PhD, (N=3) to receive an advanced research experience. The program is highly translational. Training is mentor-based, but is enriched by workshops and didactic courses in advanced contemporary laboratory skills and the "survival skills" needed to excel in modern academia. Productive mentor-prot?g? interactions are central to the research training experience, and are supplemented by active participation in local and national scientific meetings. Trainee progress is carefully monitored and evaluated by the mentor(s), the program Director, the Mentoring Council (Executive Committee) and the T32 Steering Committee. The faculty participating in this program have been chosen on the basis of research productivity, significant grant support, collegiality, and commitment to serve as outstanding mentors. The unique science research focus areas of the program include pulmonary mechanics, airway epithelial biology, inflammation, oxidative chemistry, immune responses, mechanotransduction, lung repair and regeneration, metabolism, cell apoptosis, and cell signaling. Additionally, clinica patient-oriented research focuses on asthma, interstitial lung disease, cystic fibrosis, acute lung injury, obesity, cell therapy, lung infections, palliative care in a rural setting and an emerging interest in health care policy. The disciplines of pulmonary medicine, pathology, bioengineering, microbiology, pathology, immunology, physiology and public health are strongly represented. Although the trainee will receive intensive training in a single area of research, they will also receive broad-based exposure to lung-related research in other disciplines. Patient-oriented and translational research is stressed within and throughout the program. A strength of the program is the collaborative environment and interactive relationships in which MD and PhD investigators integrate to forge productive team science that is the basis of modern biomedical research. The program as a whole will be regularly evaluated by an independent advisory committee. Finally, this program has strong institutional support from UVM, and will allow us to continue training young investigators to become future national/international leaders in pulmonary research.

Public Health Relevance

Lung disease is devastating and the prevalence of lung disease and attendant deaths is increasing. This training program for pre and postdoctoral trainees seeks to train a group of collaborative and productive scientists to investigate the causes, diagnosis and cures of debilitating lung disease such as asthma, interstitial lung disease, cystic fibrosis, acute lung injury and infections of the lung .

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Colombini-Hatch, Sandra
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Vermont & St Agric College
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Martin, Rebecca A; Hodgkins, Samantha R; Dixon, Anne E et al. (2014) Aligning mouse models of asthma to human endotypes of disease. Respirology 19:823-33
Al-Alwan, Ali; Ehlenbach, William J; Menon, Prema R et al. (2014) Cardiopulmonary resuscitation among mechanically ventilated patients. Intensive Care Med 40:556-63
Nolin, James D; Tully, Jane E; Hoffman, Sidra M et al. (2014) The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor ?B family proteins. Free Radic Biol Med 73:143-53
Chapman, David G; Tully, Jane E; Nolin, James D et al. (2014) Animal models of allergic airways disease: where are we and where to next? J Cell Biochem 115:2055-64
Wagner, Darcy E; Bonenfant, Nicholas R; Parsons, Charles S et al. (2014) Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 35:3281-97
Wagner, Darcy E; Bonenfant, Nicholas R; Sokocevic, Dino et al. (2014) Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials 35:2664-79
Menon, Prema R; Ehlenbach, William J; Ford, Dee W et al. (2014) Multiple in-hospital resuscitation efforts in the elderly. Crit Care Med 42:108-17
Martin, Rebecca A; Ather, Jennifer L; Lundblad, Lennart K A et al. (2013) Interleukin-1 receptor and caspase-1 are required for the Th17 response in nitrogen dioxide-promoted allergic airway disease. Am J Respir Cell Mol Biol 48:655-64
Smith, Bradford J; Grant, Kara A; Bates, Jason H T (2013) Linking the development of ventilator-induced injury to mechanical function in the lung. Ann Biomed Eng 41:527-36
Bonenfant, Nicholas R; Sokocevic, Dino; Wagner, Darcy E et al. (2013) The effects of storage and sterilization on de-cellularized and re-cellularized whole lung. Biomaterials 34:3231-45

Showing the most recent 10 out of 23 publications