The primary objective of this revised renewal application for post-doctoral research training support is to produce cutting edge independent scientists and future research leaders in genetic epidemiology. We are proposing to do this in a multidisciplinary setting with emphasis on substantive applied orientation in cardiovascular disease (CVD) and CVD risk factors and other complex traits related to heart, lung, and blood disorders. We have made partnership arrangements with cardiology fellowship programs at our institution so that we can actively recruit MDs (and MD/PhDs) in addition to PhDs. We believe that the research environment at Washington University is outstanding for carrying out research in cardiovascular genetic epidemiology. The cornerstone of this young program is its emphasis on intense and sustained individualized training of each trainee under the supervision of an experienced preceptor. Indeed, emphasis on individualized training is one of its hallmarks. Its centerpiece is an Individualized Training Pathway (ITP) developed for each trainee by the Program Director, the trainee's preceptor(s), and the trainee. An individual trainee's ITP will reflect his/her educational background, the previous research experience if any, the particular research interests of the trainee, and will address the curriculum needs as well as the type of research experience he/she needs. The focus of the research and training philosophy advocated by the Program Director and the participating preceptors is a clear understanding of the concepts, principles, and methods of genetic epidemiology necessary for investigating the physiological and pathophysiological processes that underlie CVD and related complex traits. We are requesting funds for continuing to support 4 slots each year (with half the slots devoted to MDs and MD/PhDs). Our proposal rises to the challenge by blending and integrating carefully chosen didactic training with greater emphasis on a direct hands-on research and grant writing experience. One of the great strengths of this training program is that the vast established resources and rich interdisciplinary training environment of the entire DBBS, as well as those of our GEMS and MSIBS masters degree training programs are available to all post-doctoral trainees in this program. The proposed post-doctoral research training program aspires to produce future genetic epidemiologists in much demand in the current market place for pursuing cardiovascular and other biomedical research. The research training environment at Washington University is outstanding, which also has a separate Office of Post Graduate Affairs to look after postdoctoral trainees and their special needs and serve as their advocate.

Public Health Relevance

This renewal application for Post-Doctoral Research Training in Genetic Epidemiology is requesting funds for continued support of 4 post-doc slots each year for 5 years. Trainees will come with an MD or MD/PhD or a PhD degree. Half of the trainees will complete a master's degree and receive in-depth training in genetic epidemiology, statistical genetics, and bioinformatics. The centerpiece of this young program is an Individualized Training Pathway (ITP), customized around the strengths and weaknesses of each trainee.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Silsbee, Lorraine M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Other Domestic Higher Education
Saint Louis
United States
Zip Code
Simino, Jeannette; Shi, Gang; Weder, Alan et al. (2014) Body mass index modulates blood pressure heritability: the Family Blood Pressure Program. Am J Hypertens 27:610-9
Basson, Jacob; Sung, Yun Ju; Schwander, Karen et al. (2014) Gene-education interactions identify novel blood pressure loci in the Framingham Heart Study. Am J Hypertens 27:431-44
Lawson, Heather A; Cady, Janet E; Partridge, Charlyn et al. (2011) Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic variation in populations. PLoS Genet 7:e1002256
Simino, Jeannette; Shi, Gang; Arnett, Donna et al. (2011) Variants on chromosome 6p22.3 associated with blood pressure in the HyperGEN study: follow-up of FBPP quantitative trait loci. Am J Hypertens 24:1227-33
Simino, Jeannette; Shi, Gang; Kume, Rezart et al. (2011) Five blood pressure loci identified by an updated genome-wide linkage scan: meta-analysis of the Family Blood Pressure Program. Am J Hypertens 24:347-54
Cheverud, James M; Lawson, Heather A; Fawcett, Gloria L et al. (2011) Diet-dependent genetic and genomic imprinting effects on obesity in mice. Obesity (Silver Spring) 19:160-70
Lawson, Heather A; Lee, Arthur; Fawcett, Gloria L et al. (2011) The importance of context to the genetic architecture of diabetes-related traits is revealed in a genome-wide scan of a LG/J ýý SM/J murine model. Mamm Genome 22:197-208
Lawson, Heather A; Zelle, Kathleen M; Fawcett, Gloria L et al. (2010) Genetic, epigenetic, and gene-by-diet interaction effects underlie variation in serum lipids in a LG/JxSM/J murine model. J Lipid Res 51:2976-84
Lawson, Heather A; Cheverud, James M (2010) Metabolic syndrome components in murine models. Endocr Metab Immune Disord Drug Targets 10:25-40