This application from the Center for Cell and Gene Therapy (CAGT) / Baylor College of Medicine (BCM) describes a comprehensive training program in cellular and genetic therapies, for both graduate students and postdoctoral fellows. This burgeoning area of translational research remains deficient in comprehensive training schemes for individuals who wish to address basic and clinical translational aspects using these biological agents. A stimulating program of education and laboratory training from high quality mentors should continue to attract promising candidates, including under-represented minorities, to this emerging field and increase the likelihood that they will pursue careers as translational researchers. Translation of basic research discoveries to clinical practice has become increasingly complex, such that advances in basic research can only be efficiently implemented when teams of investigators collaborate to validate these novel strategies in the clinic. This type of translational research training requires the involvement of a dedicated team of mentors with diverse but complementary skills. The proposed training exploits the outstanding biomedical curricula and experienced faculty within BCM and CAGT. A cadre of 26 faculty members with research interests that include vector design and targeting, stem cell biology, molecular and cellular genetics, immunotherapy, gene therapy and stem cell transplantation will be available to mentor graduate students and both MD and PhD postdoctoral fellows. Major strengths of the program are its;(1) targeting of rigorous basic biomedical science and clinical research training toward a translational goal;(2) established and multilevel integration with the proven scientific excellence of cell biology and genetics research training programs at BCM;(3) involvement of mentors, including program director and co directors, who have a wealth of experience in translational research and in training young investigators (4) availability of unique resources such as the GMP laboratories for training. Augmenting the formal course work and laboratory training will be opportunities to present recent research findings at annual retreats sponsored by CAGT and academic departments within BCM. During the first 8 years of funding this approach has successfully trained 14 graduate students who have completed their PhD degrees: all remain in academic medicine. Eight postdoctoral fellows have completed training in translational cell and gene therapy research and all remain in the field with 5 appointed to academic faculty positions and 3 in biotechnology. Of all trainees who have completed training or who are still in training 9 are under- represented minorities and 3 have under-privileged backgrounds. The maintenance of support will allow us to continue to provide trainees with a strong foundation for translational research careers in this emerging area.

Public Health Relevance

This proposal aims to train young researchers so that they can move cell and gene based therapies from basic science laboratories and into the clinic. These therapies hold great promise for regenerative medicine, cancer and other disorders, but can only be implemented after the specialized training that this award will provide

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
2T32HL092332-11
Application #
8414195
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Welniak, Lisbeth A
Project Start
2003-07-01
Project End
2018-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
11
Fiscal Year
2013
Total Cost
$298,046
Indirect Cost
$20,328
Name
Baylor College of Medicine
Department
Pediatrics
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Rouce, R H; Shaim, H; Sekine, T et al. (2016) The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 30:800-11
Rosewell Shaw, Amanda; Suzuki, Masataka (2016) Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 21:9-15
Pankowicz, Francis P; Barzi, Mercedes; Legras, Xavier et al. (2016) Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun 7:12642
Rouce, Rayne H; Heslop, Helen E (2016) Forecasting Cytokine Storms with New Predictive Biomarkers. Cancer Discov 6:579-80
Bonifant, Challice L; Szoor, Arpad; Torres, David et al. (2016) CD123-Engager T Cells as a Novel Immunotherapeutic for Acute Myeloid Leukemia. Mol Ther 24:1615-26
Rouce, Rayne H; Sharma, Sandhya; Huynh, Mai et al. (2016) Recent advances in T-cell immunotherapy for haematological malignancies. Br J Haematol :
Hegde, Meenakshi; Mukherjee, Malini; Grada, Zakaria et al. (2016) Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest 126:3036-52
Chang, Edmund C; Liu, Hao; West, John A et al. (2016) Clonal Dynamics In Vivo of Virus Integration Sites of T Cells Expressing a Safety Switch. Mol Ther 24:736-45
Gundry, Michael C; Brunetti, Lorenzo; Lin, Angelique et al. (2016) Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Cell Rep 17:1453-1461
Hanley, Patrick J; Melenhorst, Jan J; Nikiforow, Sarah et al. (2015) CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med 7:285ra63

Showing the most recent 10 out of 104 publications